
Incremental Reconfiguration of Multi-FPGA Systems�

K. K. Lee1 and D. F. Wong2

1Synopsys, Inc., Mountain View, CA
2Department of Computer Sciences, University of Texas at Austin, Austin, TX

ABSTRACT

In reconfigurable computing, circuits implemented on multi-FPGA
systems have to be incrementally modified. Since reconfiguring an
FPGA is time-consuming, the time for reconfiguration depends on
the number of FPGAs to be reconfigured. Our objective is to reduce
the number of such FPGAs. In this paper, we consider the specific
problem of incrementally reconfiguring a multi-FPGA system that
utilizes the direct interconnection architecture, where routing con-
nections between FPGAs are to neighbors that are near. This prob-
lem can be divided into a net addition problem and a net deletion
problem. We show that the net addition problem is a generalization
of the NP-complete Steiner tree problem. Our algorithm for this
problem is based on an adaptation of the Klein-Ravi approximation
algorithm for the node-weighted Steiner tree problem. As for the
net deletion problem, we prove that it is NP-complete but the prob-
lem is solvable in polynomial time for tree topologies. Based on the
algorithm for trees, we design an effective heuristic algorithm for
the general net deletion problem. Finally, we present an algorithm
for solving the incremental reconfiguration problem which handles
both placement of new gates and inter-FPGA routing.

1. INTRODUCTION

Hardware solutions have been used to speed up time-consuming
applications like circuit verification where even parallel software
solutions have been found to be wanting. Reconfigurable com-
puting on multi-FPGA systems becomes a natural choice in these
type of applications. In such problems, the circuit is partitioned
into clusters, where each cluster is implemented on an FPGA. The
FPGAs are then connected through external routing resources. More-
over, the circuit has to be modified very often, as the algorithm
progresses through stages. The changes occur throughout the en-
tire cycle of the computation. Such modifications to existing cir-
cuit are similar to those due to ECO changes where design changes
have to be made to existing designs. However, in such problems,

�This work was partially supported by the National Science Foun-
dation under grant CCR-9912390.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’02, February 24-26, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-452-5/02/0002 ..$5.00

(a) A direct intercon-
nect architecture using
the 8-way mesh.

Common Routing
Resources

(b) An indirect interconnection
architecture. Connections be-
tween FPGAs are made through
common routing resources.

Figure 1: Two main interconnection architectures

incremental changes are required very frequently, not as a result
of design changes, but as a result of computational requirements.
Thus, reconfiguration is very important for enabling such applica-
tions. Unfortunately, these design changes are extremely difficult
to implement and error prone due to a lack of automation tools
and methodologies. Another consideration is that it can be very
time-consuming. As an example, suppose there are 300 FPGAs in
the system3, and that it takes 30 minutes to configure each FPGA.
This means that it takes 150 computer-hours to implement the en-
tire system for a single stage of change. Now, suppose that we
need to make 100 changes (i.e., there are 100 stages) to this system.
Completely re-configuring this system implies that we need 15,000
computer-hours to implement all the changes. Even if a farm of 50
computers were to be used for configuring the FPGAs in parallel,
we would still need almost two weeks for the whole task. Thus, it
is not desirable to completely re-configure all the FPGAs after each
change. It is clear that the smaller the number of FPGAs that need
to be reconfigured, the faster the time for reconfiguration. This pa-
per addresses the problem of minimizing the number of chips that
are needed to be reconfigured after each incremental change.

There are two main types of routing architectures for multi-FPGA
designs, namely direct and indirect connection style. In the direct
interconnection architecture, dedicated routing resources are pro-
vided between FPGAs. As such, the connections are often local
and limited, perhaps only to its immediate neighbors. A natural
implementation is the mesh architecture. Figure 1(a) shows an ex-
ample of the 8-way mesh, where the FPGAs are arranged in a grid
and connect only to its 8 immediate neighbors. Several successful

3A multi-FPGA system with 300 FPGA is reasonable. For exam-
ple, Axis’ Xcite-2000 system has 240 FPGAs.

206

(a) 14 FPGAs need to be re-
configured

(b) 11 FPGAs need to be re-
configured

Figure 2: An example of the Net Addition Problem for multi-
FPGA systems. Three new nets are to be connected and each
FPGA that lies on the routing tree of a net has to be reconfig-
ured. By carefully sharing intermediate FPGAs, the number of
FPGAs that requires reconfiguration can be reduced.

multi-FPGA systems using the mesh style have been reported in [3,
10, 7, 15, 17, 20]. The original Quickturn emulation system [21]
and the IKOS system [8] are examples of commercial multi-FPGA
systems that utilize this architecture [19].

In the indirect architecture, the FPGAs are connected to a pool
of field programmable interconnect devices (FPIDs), and connec-
tions between FPGAs are made by programming the interconnect
resources. Figure 1(b) shows an example of such a system. The
partial crossbar is one of the more popular methods for this imple-
mentation. The Quickturn Mercury system [16] is an example of
such a multi-FPGA system.

There are some tradeoffs involved between the two main archi-
tectures. The direct method is simpler, faster and easily scaled, but
needs to use routing resources both between and within FPGAs in
order to complete connections. It is particularly suited for computa-
tions that exhibit locality effect, where the code changes occur very
slowly over time. On the other hand, an indirect-style intercon-
nection architecture does not use routing resources within FPGAs
except for FPGAs affected by logic changes. However, due to pin
limitations of FPIDs, FPIDs cannot scale as the number of logic
modules increases in the multi-FPGA system.

In this paper, we introduce the reconfiguration problem for di-
rect style multi-FPGA systems. The underlying system already
has a circuit implemented on it, and we are required to reconfig-
ure the system by deleting some nets and adding new nets, subject
to capacity constraints on each of the FPGAs and the connections
between FPGAs. This corresponds to the reconfiguration changes
for one stage of reconfigurable computing. Our objective is to re-
duce the number of FPGAs that need to be reconfigured in order to
reduce FPGA reconfiguration time, since each reconfiguration of
an FPGA involves re-placement and re-routing of circuits. There
are two subproblems to be solved, which we call the Net Addition
Problem (NAP) and the Net Deletion Problem (NDP).

In the NAP, we are given a set of terminals of nets to be placed
and routed. We want to connect each net using the dedicated rout-
ing resources between FPGAs and within FPGAs. Our objective
is to minimize the total number of FPGAs the nets pass through,
since each of these FPGAs has to be reconfigured. In Figure 2, we
show an example where three nets are to be connected. The multi-
FPGA architecture is the 4-way mesh style (the connections are not
shown in the diagram). Figure 2(a) shows a routing solution using
the shortest path algorithm which requires that a total of 14 FPGAs

Figure 3: An example of the Net Deletion Problem for multi-
FPGA systems, where three routes are shown. By reconfigur-
ing the FPGAs shown in bold, all the three nets shown can be
broken.

be reconfigured. However, a better solution is given in Figure 2(b),
where the number of FPGAs to be reconfigured is 11.

In the NDP, we are given the routing tree of a set of nets. We want
to determine a minimum set of FPGAs such that each net is broken
by some FPGA in the set (when reconfigured). It is often not neces-
sary to reconfigure all the FPGAs in these routings because a break
in a path causes the path to be electrically disconnected. The rest
of the FPGAs that the nets passes through and the LUTs associated
with the ports of the LUTs can be marked for reconfiguration later
in order to save on the time for reconfiguration. The set of FPGAs
chosen has to break every path in each net. Thus each net becomes
(“lazily”) deleted when the set of FPGAs are reconfigured to dis-
connect the nets. Figure 3 shows an example. By reconfiguring the
FPGAs shown in bold, every net is now broken.

We show that the net addition problem is a generalization of the
NP-complete Steiner tree problem. Our algorithm for this problem
is based on a modification of the Klein-Ravi approximation algo-
rithm for the node-weighted Steiner tree problem. As for the net
deletion problem, we prove that it is NP-complete but the problem
is solvable in polynomial time for tree architectures. Based on the
algorithm for trees, we design an effective heuristic algorithm for
the general net deletion problem. Finally, we present an algorithm
for solving the incremental reconfiguration problem which handles
both placement of new gates and inter-FPGA routing for the direct
style interconnection architecture.

The rest of this paper is organized as follows. Section 3 intro-
duces some definitions and terminologies used in this paper. Sec-
tion 4 introduces the Net Addition Problem. This problem is NP-
complete, and we give an algorithm for determining the FPGAs to
be reconfigured after placement and routing. Section 5 introduces
the Net Deletion Problem. We show that this problem is also NP-
complete, but show that deleting a net is polynomial-time solvable.
We give an algorithm to determine a small set of FPGAs to recon-
figure in order to delete all these nets. In Section 6, we show how to
handle these two problems together. Since there are no existing test
cases for this problems, we explain how the experiments are setup
in Section 7. We show the results of our algorithm and that based
on shortest-path. Finally, in Section 8, we give some conclusions
and some extensions.

2. RELATED RESEARCH

Tessier in [19] dealt with the problem of incremental compilation
in logic emulation. Their solution involves using a multi-way parti-
tioning algorithm to incrementally partition the circuit to minimize
the interconnections of the new circuit. Each partition is then im-
plemented on an FPGA and incrementally routed. However, their

207

Figure 4: Graph representation of the system in Figure 1(a).
Each vertex represent an FPGA. Weights on vertices model the
logic capacity and weights on edges model connectivity capac-
ity.

two test cases used only 16 FPGAs in each case, and are therefore
quite small compared to the system we are considering, which has
hundreds of FPGAs. Moreover, we are not aware of any previous
publication that deals with the specific incremental reconfiguration
problem studied in this paper. In the problem considered in this pa-
per, the amount of leftover capacity (from the circuit implemented
from the previous stage) on the FPGAs are non-uniform and the
multi-way partitioning algorithm will have to dynamically decide
on each partition capacity to use for the partitioning algorithm and
optimally determine which of the FPGAs to use. The number of
potential partitions is in the order of hundreds for reasonably sized
multi-FPGA systems.

There have been some related research on routing and on differ-
ent multi-FPGA architectures. Previous research on routing and ar-
chitecture of multi-FPGA systems deal with systems that are quite
small, typically containing only dozens of FPGAs [11, 12, 13].
However, today’s multi-FPGA systems are much bigger. For exam-
ple, the Axis Xcite-2000 system consists of 10 FPGAs on a single
board, and up to 24 such boards can be fitted into the slots of a SUN
Ultra-SPARC machine, for a total of 240 FPGAs [1]. Also, none
of the previous researches are specifically concerned with reducing
the number of FPGAs to reconfigure.

3. PRELIMINARIES

In this section, we give some definitions used in the rest of this
paper. A graph, G = (V;E), for a direct interconnection multi-
FPGA architecture is a graph-theoretic representation of the un-
derlying interconnection in this system. The vertices or nodes V
represent the FPGAs in the system and the edges E represent the
dedicated interconnections between FPGAs. We also refer to the
vertices of a graph G as V (G) and its edges as E(G). A capacity
function c : V [E ! R+ associates with each node a node capacity
and each edge an edge capacity. The node capacities may be used
to model the amount of logic resources (for example, the number
of LUTs) the corresponding FPGA can accept comfortably, while
the edge capacities can be used to model the number of connections
that it can accept. Note that if techniques such as virtual wire [2]
that multiplexes signals onto the wires are used, we can set edge
capacities higher than the actual number of connecting wires, at
the expense of longer emulation time. Figure 4 shows the device
graph for the multi-FPGA system in the example of Figure 1(a).
Typically, such mesh-styles also have wraparound edges to con-
nect vertices on the two sides, but no wraparound edges between
the top and bottom row. The wraparound edges are not shown in
Figure 4. A graph G0 =(V 0;E 0) is a subgraph of a graph G = (V;E)
if V 0 �V and E0 � E.

The length of a path between two vertices is the number of edges
in the path. The cost of the path is the total of node costs and edge
costs used in the path. The level of a node in a rooted tree is the
length from the root. We say that u; v, or that v is reachable from
u, if and only if there is a path from node u to node v. The lowest
common ancestor of two vertices u and v in a rooted tree (denoted
lca(u;v)) is a vertex a such that a; u and a; v and such that
the path length from a to u and a to v is the smallest possible (i.e.,
the length from the root to a is the longest possible). Note that the
lca of any two vertices in a rooted tree is unique. Analogously,
we define lca(S), where S � V , to be the lowest vertex a such that
a; v for all v 2 S. Again lca(S) is unique in tree structures for a
given set S.

A graph is planar if it can be drawn on a plane with no edges
crossing. Such a drawing is known as a planar embedding. An
embedding is orthogonal if the edges are drawn with only horizon-
tal and vertical lines. A graph is a grid graph if the vertices are
placed on a grid, and all edges of a node are to its neighbors on its
immediate left, right, above or below in a geometric sense.

A net specifies the source and the sinks of a signal. A netlist is a
collection of nets. To route a net, we specify the tree used to con-
nect the source to every sink. Routing trees of different nets may
share vertices, unlike in typical routing problems, since the vertices
are FPGAs that can accommodate multiple nets. Even though a net
may have more than one sink in an FPGA, this appears as only one
sink in that FPGA in the reconfiguration problem because a signal
entering the FPGA can be distributed within the FPGA. We refer to
the set of such inter-FPGA netlists as aggregated netlists. Accord-
ingly, the terms two-terminal and multi-terminal nets refer to the
aggregated netlist, and not to the original netlist.

4. NET ADDITION PROBLEM

In this section, we describe the Net Addition Problem (NAP),
and algorithms to solve this problem. We first give the definition of
a classical graph problem,

DEFINITION 1. (Node-Weighted Steiner Tree Problem) : Let
G = (V;E) be a graph with weights on each node v, wv. Let N �V
be a subset of vertices of V . Find a tree TG(N) that connects all the
vertices in N, using, optionally, some nets in V �N, and such that
w(TG(N)) is a minimum, where w(TG(N)) = ∑

v2V(TG(N))

wv.

The nodes in TG(N)�N are called steiner points. This problem
is a generalization of the NP-complete Steiner Tree Problem, where
the weights are on the edges, since we can always convert the stan-
dard problem to the node-weighted version by inserting a vertex
into every edge and putting the weight of the edge onto the inserted
vertex. Thus, the node-weighted problem is NP-complete. If we
are only interested in minimizing the number of steiner points, this
problem is known as the unweighted version. This problem is also
NP-complete [6].

We now consider the first problem we have to handle during
multi-FPGA reconfiguration. The problem is given in an abstract
graph-theoretic formulation.

DEFINITION 2. (Net Addition Problem) : Let G = (V;E) be
the device graph of a multi-FPGA system and let c : V [E ! R+ be
the capacity function of the nodes and edges. Let N = fN1; : : : ;Nkg
be a set where Ni is a netlist for net i. Determine a steiner forest,
i.e., a set of vertices S = TG(N1)[TG(N2)[: : :[TG(Nk), such that
TG(Ni) is a connecting tree of Ni for 1� i� k and w(S) is minimum,
subject to node and edge capacity constraints.

208

1,2,3

1

2

3 3

4

4

5

5

Figure 5: A rerouting example with 5 nets. The number rep-
resent the terminals of nets located inside the FPGA. A steiner
forest, with sharing of vertices, is sought to connect all the ter-
minals of each net. 13 FPGAs need to be reconfigured, of which
4 are steiner.

A connecting (steiner) tree TG(Ni) is a route of net i. Unlike
usual routing problems where vertices must be exclusively used by
nets, sharing of vertices between routes are allowed, since each
vertex correspond to FPGAs. Figure 5 shows an example of NAP
with five nets. The graph is an 8-way mesh, and the terminals of
nets are labelled 1 through 5. Two distinct steiner trees with 13
vertices are used to connect the nets, with 4 vertices being steiner.

The regular Steiner Tree Problem (with edge weights) is a very
well studied problem. However, there is much less study on the
node-weighted Steiner tree problem, as it is harder than the stan-
dard problem. The Steiner Tree Problem can be approximated to
within a constant factor of the optimal [22], but the node-weighted
version cannot be approximated to less than a logarithmic factor un-
less P̃� NP, where P̃ = DTIME[npolylogn] [14]. In [14], Klein and
Ravi gave the first approximation algorithm for the node-weighted
Steiner tree problem. It achieves an approximation ratio of O(2lnk),
where k is the number of terminals to connect. Guha and Khuller
then gave an algorithm that achieves an approximation ratio of
O(1:35lnk) [6].

We now describe our algorithm RouteOneNet for routing a
new net. Let T be the set of terminals in the net. Although the
Guha-Khuller algorithm gives a slightly better theoretical bound
on approximation, it requires repeated graph matching. This is not
quite practical since we need to perform different placements and
hence routing repeatedly. Our algorithm is a modification of the
Klein-Ravi algorithm.

In each iteration, the algorithm scans through all the vertices of
the tree and determines a node with small “average cost”. As an ex-
ample, consider the net in Figure 6(a). The node chosen is circled,
together with the tree shown in thick lines. In the next step, the
tree is collapsed into a terminal as shown in Figure 6(b). Another
node is then chosen and another tree collapsed in Figure 6(c). The
process is then repeated until one terminal is left. At this point, the
tree is reconstructed as shown in Figure 6(e).

To choose the node and the tree to collapse, we compute the cost
as follows : let t j be the terminals of a net to be connected, and
let d(v;t j) be the minimum weighted distance from v to tj . Assume
that the terminals are sorted in order of d(v;t j). This node has cost :

cvi =
wv +∑i

j=1 d(v;t j)

i
for i = 2; : : : ; jT j:

We choose v and i with the smallest cvi value. To ensure that v
is not too far from the remaining terminals, we also compute the
average distance, xvi of the remaining terminals from the source s
and also the average distance of these nodes from the node v, yvi.

(a) A node is chosen. (b) Tree collapsed and
another node chosen

(c) Another node is
chosen.

(d) End of collapsing.

(e) Tree reconstructed.

Figure 6: Illustration of algorithm

Then we pick the smaller of these two and add to cvi +d(s;v) and
use this modified cost as our new cost, i.e.,

c
0

vi = cvi +minfxvi;yvig+d(s;v); for i = 2; : : : ; jT j:

Our rationale is as follows. Since the remaining terminals are to
be connected with this tree, we estimate the cost taken to connect
the remaining terminals. If the remaining nodes are, on average,
close to the source, then these should be connected to the source.
Otherwise, the remaining nodes should be connected to v. Hence,
our choice of quotient cost. Clearly, (jT j� i):minfxvi;yvig+d(s;v)
is an upper bound on the cost to connect the remaining trees. Note
that this algorithm is not the same as maze routing. In maze routing,
the least cost path is found iteratively as the algorithm considers one
terminal at a time to connect to the partial tree constructed, start-
ing with the source. This does not always produce a good steiner
tree. In our algorithm, great care is taken to produce good steiner
trees. In particular, the Klein-Ravi algorithm produces provably
good trees.

We can perform routing of all new nets by iteratively routing one
net at a time with RouteOneNet. Once a net is routed, the nodes
that the net passes through will have its weight reduced by a certain
amount. When routing subsequent nets, the nets will be encouraged
to use those vertices that have already been used. In fact, no further
cost is incurred by routing through such vertices, since a one time
cost has already been paid for.

209

Algorithm RouteOneNet (terminals T)
1. while jT j � 1 do

begin
2. compute d(v;t) where v 2V and t 2 T
3. for each v 2V do

begin
4. order T into t1; : : :tjT j in non-increasing order

of d(v;ti)
5. compute c

0

vi for i = 2 to jT j
6. pick i such that c

0

vi is minimum,
end

7. pick (v; i) pair such that c
0

vi is minimum
8. collapse the tree formed by v; t1; : : : ;v; ti

into v0 where v; t j is the path used
to compute d(v;t j)

9. T = T �ft1; : : : ;tig[fv0g
end

10. reconstruct routing tree

Figure 7: Algorithm RouteOneNet

5. NET DELETION PROBLEM

Another common problem in the multi-FPGA reconfiguration
problem is the Net Deletion Problem. As illustrated in Figure 3, we
are given a set of routes of nets to be deleted. We want to choose a
small set of FPGAs to reconfigure, so that all connections between
the terminals of each net are broken. This problem can be simply
stated as follows :

DEFINITION 3. Given a graph G representing the connectivity
of the FPGAs, and a set R of net routings on this graph, find a
minimum cardinality (or weighted) set of vertices whose removal
disconnects all pairs of terminals of each net in R.

This set is known as the breaking set of (G;R). We now show
that this problem is NP-complete if the underlying graph is a grid
graph. Since the grid graph is one of the simplest implementation
of the underlying connectivity of multi-FPGA systems, this means
that the problem on other more general and interesting graphs like
mesh, planar, etc., are also NP-complete. However, we show that
if the underlying graph is a tree, the problem is polynomial time
solvable.

We give the following definition and then state a well-known
result which will be needed in the proof of Theorem 2 :

DEFINITION 4. (Vertex Cover Problem) : Given a graph
G = (V;E), find a minimum cardinality set C � V such that for
each edge (u;v) 2 E, either u 2C or v 2C.

THEOREM 1. Vertex Cover for planar graphs (PVC) is NP-
complete [5].

THEOREM 2. The Net Deletion Problem over a grid graph is
NP-complete.

Proof: NDP is in NP since given a breaking set B for an NDP
over a grid graph G, we can easily check in polynomial time if for
each routing tree, Ri 2 R, whether for every pair of terminals, u and
v, there exists a vertex w 2 B such that w lies on the unique path
between u and v in Ri.

We next show that NDP is NP-complete by reducing PVC to
NDP over a grid graph. Given a PVC problem G = (V;E), we

1 2

345

6

7 8 9 10

111213

(a) Planar Vertex Cover

1

2

3

4

5

6

7

8 9

1011

(b) Visibility representation

1

2

3

4

5

6

7

8 9

1011

(c) Orthogonalized represen-
tation

1

2

3

4

5

6

7

8 9

1011

(d) Net Deletion Problem

Figure 8: Proof that NDP is NP-complete

construct an instance of the NDP problem (G0;R0), where G0 =
(V 0;E 0), by creating an orthogonal embedding of G such that the
vertices are placed on a grid, and each edge becomes transformed
to a path with orthogonal edges.

To do this, we first find the visibility representation of G. This is
a geometric diagram where each vertex is mapped to a horizontal
rectangle and each edge is mapped to a vertical line, only touching
the two rectangles representing the vertices of its endpoints. Thus,
no vertical line cut across any rectangle and no two vertical lines
coincide. The algorithm of Kant [9] computes this representation
in linear time using an area at most O(jV j)�O(jV j). Figure 8(a)
shows a planar graph and Figure 8(b) shows a corresponding visi-
bility representation. We create an orthogonal embedding of G by
shrinking each horizontal rectangle into a point on the left side of
each rectangle. For each vertical connection originally touching
the rectangle, a horizontal segment is added to connect to the new
point. This causes each path to have at most two bends. Figure 8(c)
shows the shrinking. For example, consider the edge (2,9) in Fig-
ure 8(b). Since the rectangles 2 and 9 are shrunk, the edge (2,9) now
becomes a “ ” shaped orthogonal path as shown in Figure 8(c).
This stage requires polynomial time since each path have length at
most O(3jV j) in the orthogonal embedding. Once this is done, we
simply add additional vertices representing the FPGAs to fill the
entire grid. At most O(jV j2) extra vertices are needed. Hence, the
transformation takes polynomial time.

By the way we constructed the horizontal segments, all turns are
always to the left, i.e., “ ” or “ ” shaped turns only. “ ”
and “ ” shaped turns are not possible. Neither can there be any
crossing of paths, i.e., “ ”, since by definition of the visibility rep-
resentation, no vertical edge can cross a rectangle. Also, whenever
an orthogonal path turns left at an FPGA, other orthogonal paths
passing through that vertex must be horizontal. It is also easy to
see that all orthogonal paths connect to only two endpoints (i.e., all
nets are two-terminal).

Let f : V !V 0 be a function that correlates a vertex in V with a
vertex in V 0, such that v0 = f (v) if v0 in the orthogonal embedding is
obtained by shrinking the rectangle representing v in the visibility

210

Algorithm BreakRoute (route R)
1. S = the vertices of route R

sorted in reverse topological order
2. T = terminals of R
3. B := /0
4. for each vertex v in S do

begin
5. if v already marked for reconfiguration

or is an lca of any two t1;t2 in T then
begin

6. B := B[fvg
7. T = T �ft j t 2 T and t is a desc. of vg

end
end

Figure 9: Algorithm BreakRoute

representation. Conversely, f�1(v0) = v if v0 is the corresponding
vertex of v in the orthogonal embedding, and f�1(v0) is undefined
if it was a vertex added at the last stage to fill the grid. Also, we
define f (S)= f f (v) j v2 Sg. For each edge (u;v)2E, we define the
corresponding orthogonal path in G0 as Pf (u) f (v). Let G0 be the grid
graph created above and let R0 = fPf (u) f (v) j (u;v)2Eg. Therefore,
the instance of NDP we create is (G0;R0). We now show that G has
a vertex cover of size k if and only if (G0;R0) has a breaking set of
size k.

Suppose G has a vertex cover C of size k. Then for every edge
(u;v) in G, either u 2 C or v 2C. Let C0 = f (C). Then in G0, for
every path Pf (u) f (v) 2 R0, either f (u) 2C0 or f (v) 2C0. Thus, the
vertices in C0 breaks all the paths in R0. Hence C0 forms a breaking
set of (G0;R0), and jC0j= jCj.

Now suppose that B forms a breaking set of (G0;R0) of size k.
We first show that there exists a breaking set B0 such that for each
vertex v0 2 B0, f�1(v0) 2 V . Suppose for some v0 2 B0, f�1(v0)
is undefined, then v0 lies completely within an orthogonal path P,
i.e., v0 is not at the end point. If v0 lies on a horizontal segment,
then we can follow P to the left until it hits an endpoint. Note
that it is not possible for a concurrent path to leave this horizontal
segment because all turnings are to the left. If v0 lies on a vertical
segment, then v0 breaks only P since no vertical segment overlap.
We now follow P down till it hits an endpoint of the path, or it
turns left. Then the situation is the same as above. Let the endpoint
reached be v00. In either case, it is clear that v00 breaks the path(s)
it originally breaks (in fact, it may break more paths). Therefore,
the set B�fv0g [fv00g also forms a breaking set with the same
cardinality. Applying the above repeatedly, we can find a breaking
set B0 such that for each vertex v0 2 B0, f�1(v0) 2 V , and jB0j =
jBj= k.

Since B0 is a breaking set of (G0;R0) such that B0 � f (V), then for
each path Pu0v0 2R0, either u0 2B0 or v0 2B0. Let C = f f �1(v0) j v0 2
B0g. Then, for each edge (f�1(u0); f�1(v0)) 2 E, either f�1(u0) 2
C or f�1(v0) 2C. Hence, C forms a vertex cover of G and jCj= k.

COROLLARY 2.1. NDP is NP-complete over mesh and planar
topologies.

THEOREM 3. NDP is polynomial-time solvable for a single net.

Proof: Consider algorithm BreakRoute in Figure 9. Let B be
the breaking set obtained from the algorithm and suppose B0 is a

breaking set such that jB0j< jBj. We arrange the elements of B and
B0 in the order in which the vertices are processed. Let x be the first
vertex in this order that is in B0�B. Let x break the path between
two remaining terminals t1 and t2, where t1 and t2 have the lowest
lca. Clearly, lca(t1;t2) breaks the path between t1 and t2 and that
lca(t1;t2) 2 B. Then either t1 or t2 is a descendent of x, otherwise
x can never break the path between t1 and t2. Without loss of gen-
erality, assume that t1 is a descendent of x. If x = lca(t1;t2), then x
will be found by the algorithm since it is the lowest lca, contradict-
ing our assumption. Hence x 6= lca(t1;t2). In this case, if lca(t1;t2)
is a descendent of x, then x cannot break the path between t1 and
t2, so lca(t1;t2) must be an ancestor of x. However, if we replace
x with lca(t1;t2), then lca(t1;t2) breaks the path between t1 and t2,
and we still get a breaking set with the same cardinality. Notice
that lca(t1;t2) is what will be found by the algorithm. Hence, if we
perform the above replacement repeatedly, we get a breaking set
that is the same as that found by the algorithm, yet with a smaller
cardinality, leading to a contradiction. Hence, the algorithm gives
us the optimal solution.

The algorithm can be made to run in linear time as follows : it
traverses R in depth-first order. At the leaves (terminals), the num-
ber of descendent terminals to break, d, is set to 1. As it backups the
tree, it collates d from its children. This is the number of terminals
it needs to break at the node. If d > 1, then the node is an lca of two
of the remaining terminals and can be marked for reconfiguration.
d is then set to zero and passed to its parent.

The algorithm BreakRoute can “break” one net optimally. It
can be generalized to the algorithm Break which can simultane-
ously “break” all nets if the union of all the nets is a tree. Optimality
of Break will be presented in the proof of the next theorem. The
algorithm Break is the basic procedure to solve the general NDP.
We iteratively look for a maximal set of nets such that their union
is a tree and apply Break to delete the nets in the set.

THEOREM 4. NDP is polynomial-time solvable for tree topol-
ogy.

Proof: The proof is similar to that of the algorithm BreakRoute.
Let B be the breaking set obtained from algorithm Break and sup-
pose B0 is a breaking set such that jB0j < jBj. We arrange the el-
ements of B and B0 in the reverse topological order in which the
vertices are processed. Let x be the first vertex in this order that is
in B0�B. Let x break the path between t1 and t2, where t1 and t2 are
terminals belonging to route Ri and have the lowest lca. Without
loss of generality, assume that t1 is a descendent of x, but t2 is not.
Let y be the nearest ancestor of x that is an lca of any two remain-
ing terminals of any net (note that y may or may not be lca(t1;t2)).
Then clearly, lca(t1;t2) is either y or an ancestor of y. If we re-
place x with y, then y breaks the path between t1 and t2, and we still
get a breaking set with the same cardinality. Notice that y is what
will be found by the algorithm. Hence, if we perform the above re-
placement repeatedly, we get a breaking set that is the same as that
found by the algorithm, yet with a smaller cardinality, leading to a
contradiction. Hence, the algorithm gives us the optimal solution.

This algorithm runs in polynomial time. It keeps track of the
number of descendent terminals, d[i], it needs to break for each net
i. At the terminal of a net i, d[i] is set to 1. As it backups the tree,
the number is collated from its children. If d[j] > 1 for some j,
then it is an lca of two remaining terminals of net j. This node is
then marked for reconfiguration, and all d[i] is set to zero. Since all
the updates are local, it runs in polynomial time.

211

Algorithm Break(NDP (G;N))
1. S = the vertices of G

sorted in reverse topological order
2. Ti = terminals of Ri
3. B := /0
4. for each vertex v in S do

begin
5. if v already mark for reconfiguration

or v = lca(x;y), where x;y 2 Ti, for some i, then
begin

6. B := B[fvg
7. Tj = Tj�ft j t 2 Tj and t is a desc. of vg

end
end

Figure 10: Algorithm Break

2 1

2 1 2

1 2

Figure 11: Illustration of Algorithm Break. The dark vertices
form a breaking set. There exist a dark vertex between any two
pairs of terminals belonging to any net.

6. INCREMENTAL RECONFIGURATION
PROBLEM

The multi-FPGA incremental reconfiguration problem involves
the modification of a circuit already implemented on the system.
Abstractly, we are given the device graph G, a circuit H with some
nodes already placed (F) and the rest to be placed and routed on
G, and also a set of routes R to be disconnected. The objective is
to determine a placement and routing of the new circuit such that
the number of FPGAs to reconfigure is minimum, subject to node
and edge capacity constraints. The set of circuit nodes F that have
fixed positions are the connections to the existing circuit.

Clearly, the combined problem is also NP-complete. We solve
this problem problem using simulated annealing. During each sim-
ulated annealing move, it solves the NAP followed by the NDP.
This is because the NAP potentially uses more FPGAs in order to
route, and this can provide FPGAs for nets to be broken without
incurring additional FPGAs to reconfigure. The NAP is solved by
routing each net using our algorithm RouteOneNet, reducing the
weights of vertices used by another net. The NDP is solved by run-
ning Algorithm Break on the routes. The cost evaluated during
the simulated annealing algorithm is an aggregate cost of the num-
ber of FPGAs to reconfigure (n), the total length of the routes (l)
and the maximum overflow (f). The cost function used is

c = αn+βl + γ f 2:

Since the capacity constraints model the ability of the FPGA
software to reconfigure the FPGA, more overflow implies that the
FPGA is harder to reconfigure, therefore we make it a quadratic
term to allow for small overflows, but heavily penalize large over-

flows. In most FPGAs, a utilization below 70% implies that the
FPGA should be quite easily placed and routed. Complete place-
ment and routing becomes increasingly harder as utilization grows
beyond 80%. The overflow can also be changed to (f + k)2 for
some big enough k > 0 to completely discourage overflow. Then as
the utilization approaches f , the penalty increases. The coefficients
are used to adjust the relative importance of the different variables.
In our experiments, we used α = 0:99, β = 0:001 and γ = 0:009.

7. EXPERIMENTAL RESULTS

To design some meaningful test cases, we use the suite of MCNC
benchmark circuits as our starting point. Each circuit was treated as
a new sub-circuit to be placed and routed on a multi-FPGA system
with a circuit already implemented on it. Each node in the circuit
represents a 4-LUT (the most popular logic block among commer-
cial FPGA vendors) in order to get reasonably sized circuits for our
experiments. We randomly generated a small set of fixed place-
ment for the I/O nodes and some of the internal nodes. The fixed
nodes formed about 30% of the total nodes, and the rest are de-
termined by the algorithm. To simulate the fact that an existing
circuit is already implemented on the multi-FPGA system, we ran-
domly generate node capacities for each FPGA using the uniform
distribution with a mean of 100 4-LUTs for most circuits and 200
4-LUTs for the larger circuits. The edge capacities are not taken
into account (as in the case where virtual wires are used). How-
ever, it is a simple extension to take edge capacities into account in
the case where virtual wires are not used. We assume that, for each
FPGA a net passes through, it uses up some η unit of the FPGA
resources. We used η = 1 in our experiments. Note that η can
be non-uniform. The topology graph used is the 8-way mesh with
horizontal wraparound.

For comparison purposes, we also implemented a method using
shortest path as the algorithm for connecting nets. The nets are
routed in turn and the cost of FPGAs that have already been used
are set to zero. In other words, the algorithm will try to reuse FP-
GAs that already need to be reconfigured. The deletion algorithm
is the same in both our steiner-tree based algorithm and the short-
est path based algorithm. The results are summarized in Table 1.
For example, for the circuit Ex1 the entry using shortest path is
43/521/1, which means that it requires reconfiguration of 43 FP-
GAs, a total length of 521 units and a maximum overflow of 1.
As can be seen, the average improvements in the number of FP-
GAs to be reconfigured is about 15%, while some improvements
of 20-30% are also seen. Since reconfiguring each FPGA can take
hours, this reduction can translate to significant savings in overall
reconfiguration time.

8. CONCLUDING REMARKS

In this paper, we formulated the problem for reconfiguration in
multi-FPGA systems that uses the direct connection architecture.
Our objective is to reduce the number of FPGAs to reconfigure in
order to reduce the time needed for such reconfiguration. We for-
mulated the Net Addition Problem and the Net Deletion Problem
for this architecture, and showed that the Net Addition Problem
is a generalization of the NP-complete Steiner Tree Problem and is
therefore NP-complete. We also proved that the Net Deletion Prob-
lem is NP-complete over grid graphs, mesh graphs and also planar
graphs. However, we prove that it is polynomial-time solvable for
tree architectures. We gave algorithms to solve both problems and

212

circuit size shortest path ours % imp.
(jV (H)j; jNj; jFj) (n=l= f) (n=l= f) on n

Ex1 (107,105,38) 43/521/1 37/718/0 14.0
Ex2 (116,83,74) 35/570/0 30/378/0 14.3
Ex3 (179,153,59) 54/996/0 37/923/0 31.5
Ex4 (482,460,134) 85/3767/0 79/3628/0 7.1
Ex5 (161,153,47) 42/947/0 39/921/0 7.1
Ex6 (116,83,74) 43/507/0 38/339/0 11.6
Ex7 (779,682,302) 50/1821/0 43/1540/0 14.0
Ex8 (235,209,87) 56/1094/0 38/1056/0 32.1
Ex9 (208,202,67) 56/1397/0 41/1493/0 26.8
Ex10 (490,487,157) 72/4030/0 73/3703/0 -1.4
Ex11 (274,247,79) 57/1671/0 44/1802/0 22.8
Ex12 (340,501,170) 30/567/0 30/562/0 –
Ex13 (1073,1027,325) 59/8212/0 44/8570/0 25.4
Ex14 (1253,1061,482) 71/6959/0 49/7251/0 31.0
Ex15 (565,530,156) 38/1469/0 37/1383/0 2.7
Ex16 (821,683,311) 49/2057/0 41/1724/0 16.3
Ex18 (166,161,54) 47/1088/0 38/1315/0 19.1
Ex17 (443,340,243) 64/2959/0 47/3220/1 26.6
Ex19 (231,229,74) 35/744/0 36/548/0 -2.9
Ex20 (495,480,158) 36/1013/0 35/1238/0 2.8
Ex21 (503,487,158) 79/4572/0 80/4362/0 -1.3
Ex22 (123,112,45) 53/597/0 43/653/0 18.9
Ex23 (226,222,64) 57/1611/0 44/1602/0 22.8
Ex24 (100,79,46) 38/477/0 35/396/0 7.9
Ex25 (309,275,90) 54/2067/5 49/2130/0 9.3
avg – 1303 1107 15.0

Table 1: Reconfiguration results for test cases. Each test case
is a sub-circuit to be placed and routed on a multi-FPGA sys-
tem with a circuit already implemented on it. Each node in
this sub-circuit represents an LUT. The shortest-path based net
addition algorithm is a simpler and reasonable alternative to
RouteOneNet. A set of nets is also randomly generated to
simulate nets to be deleted.

presented a simulated annealing approach that solves both prob-
lems in a reconfiguration setting. The number of FPGAs needed
for reconfiguration in our approach is about 15% less than using a
more direct shortest path approach.

As a future research, the problems investigated in this paper
should also be investigated for the indirect connection architecture.
As the architecture is very different than that considered in this pa-
per, a totally different approach is probably necessary. Also, this
problem should also be studied for hybrid architectures that com-
bine good features of the different architectures.

9. REFERENCES

[1] Axis Corporation. “Xcite-2000 datasheet”.
http://www.axiscorp.com/products/Xcite2000.html, 1999.

[2] J. Babb, R. Tessier, M. Dahl, S. Hanono, D. Hoki, and
A. Agarwal. “Logic Emulation with Virtual Wires”. IEEE
Transactions on Computer Aided Design, 16(6):609–626,
June 1997.

[3] N. W. Bergmann and J. C. Mudge. “Comparing the Perfor-
mance of FPGA-Based Custom Computers with General-
Purpose Computers for DSP Applications”. In Proceedings
FPGA Symposium, pages 164–171, 1994.

[4] M. Chrobak and T. H. Payne. “A Linear-time Algorithm for
Drawing a Planer Graph on a Grid”. In TR UCR-CS-90-2, De-
partment of Math and Computer Sciences., University of Cal-
ifornia at Riverside, 1990.

[5] M. R. Garey and D. S. Johnson. “Computers and Intractabil-
ity”. W. H. Feeman & Company, 1979.

[6] S. Guha and S. Khuller. “Improved Methods for Approximat-
ing Node Weighted Steiner Trees and Connected Dominating
Sets”. Information and Computation 150, pages 57–74, 1999.

[7] S. Hauck, G. Borriello, and C. Ebeling. “Springbok: A Rapid-
Prototyping System for Board-Level Designs”. In Proceed-
ings FPGA Symposium, pages 170–177, October 1994.

[8] Ikos Systems, Inc. “VirtuaLogic Emulation System Manual”.
Feb 1997.

[9] G. Kant. “Drawing Planar Graphs Using the Canonical Order-
ing”. In Proceedings Foundation of Computer Science, 1992.

[10] T. Kean and I. Buchanan. “The Use of FPGAs in a Novel
Computing Subsystem”. In Proceedings FPGA Symposium,
pages 60–66, 1992.

[11] M. A. S. Khalid and J. Rose. “The Effect of Fixed I/O Posi-
tioning on The Routability and Speed of FPGAs”. In Cana-
dian Workshop on Field Programmable Devices, pages 94–
102, 1995.

[12] M. A. S. Khalid and J. Rose. “Experimental Evaluation of
Mesh and Partial Crossbar Routing Architecture for Multi-
FPGA Systems”. In International Workshop on Logic and Ar-
chitecture Synthesis, pages 119–127, December 1997.

[13] M. A. S. Khalid and J. Rose. “A Hybrid Complete-Graph
Partial-Crossbar Routing Architecture for Multi-FPGA Sys-
tems”. In Proceedings FPGA Symposium, pages 45–54,
February 1998.

[14] P. Klein and R. Ravi. “A Nearly Best-possible Approximation
Algorithm for Node-weighted Steiner Trees”. In Proceedings
Integer Programming and Combinatorial Optimization, pages
323–331, 1993.

[15] D. Matthew, B. Jonathan, R. Tessier, S. Hanono, D. Hoki,
and A. Agarwal. “Emulation of the sparcle microprocessor
with the MIT virtual wires emulation system”. In Proceedings
FPGA Symposium, pages 14–22, 1994.

[16] Quickturn. “Mercury Technology Backgrounder”.
http://www.quickturn.com/products/mercury backgrounder.htm,
2000.

[17] P. Shaw and G. Milne. “A Highly Parallel FPGA-based Ma-
chine and its Formal Verification”. Lecture Notes in Comp.
Sc. 705 - Field-Programmable Gate Arrays : Architectures
and Tools for Rapid Prototyping, pages 162–173, 1993.

[18] R. Tamassia, I. G. Tollis, and J. S. Vitter. “Lower Bounds
for Planar Orthogonal Drawings of Graphs”. Information Pro-
cessing Letters 39, pages 35–40, 1991.

[19] R. Tessier. “Incremental Compilation of Logic Emulation”.
In Proceedings Rapid System Prototyping, pages 236–241,
1999.

[20] K. Yamada, H. Nakada, A. Tsutsui, and N. Ohta. “High-Speed
Emulation of Communication Circuits on a Multiple-FPGA
system”. In Proceedings FPGA Symposium, 1994.

[21] J. Varghese, M. Butts, and J. Batcheller. “An Efficient Logic
Emulation System”. In IEEE Transactions on VLSI Systems,
1(2), Jun. 1993.

[22] A. Zelikovsky. “An 11/6-approximation algorithm for the net-
work Steiner problem”. Algorithmica, 9:463–470, 1993.

213

