Incremental Reconfiguration of Multi-FPGA Systems

K. K. Lee\(^1\) and D. F. Wong\(^2\)

\(^1\)Synopsys, Inc., Mountain View, CA
\(^2\)Department of Computer Sciences, University of Texas at Austin, Austin, TX

ABSTRACT

In reconfigurable computing, circuits implemented on multi-FPGA systems have to be incrementally modified. Since reconfiguring an FPGA is time-consuming, the time for reconfiguration depends on the number of FPGAs to be reconfigured. Our objective is to reduce the number of such FPGAs. In this paper, we consider the specific problem of incrementally reconfiguring a multi-FPGA system that utilizes the direct interconnection architecture, where routing connections between FPGAs are to neighbors that are near. This problem can be divided into a net addition problem and a net deletion problem. We show that the net addition problem is a generalization of the NP-complete Steiner tree problem. Our algorithm for this problem is based on an adaptation of the Klein-Ravi approximation algorithm for the node-weighted Steiner tree problem. As for the net deletion problem, we prove that it is NP-complete but the problem is solvable in polynomial time for tree topologies. Based on the algorithm for trees, we design an effective heuristic algorithm for the general net deletion problem. Finally, we present an algorithm for solving the incremental reconfiguration problem which handles both placement of new gates and inter-FPGA routing.

1. INTRODUCTION

Hardware solutions have been used to speed up time-consuming applications like circuit verification where even parallel software solutions have been found to be wanting. Reconfigurable computing on multi-FPGA systems becomes a natural choice in these types of applications. In such problems, the circuit is partitioned into clusters, where each cluster is implemented on an FPGA. The FPGAs are then connected through external routing resources. Moreover, the circuit has to be modified very often, as the algorithm progresses through stages. The changes occur throughout the entire cycle of the computation. Such modifications to existing circuit are similar to those due to ECO changes where design changes have to be made to existing designs. However, in such problems,

\(^3\)This work was partially supported by the National Science Foundation under grant CCR-9912390.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

FPGA'02, February 24-26, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-452-5/02/0002 ..$5.00

Figure 1: Two main interconnection architectures

incremental changes are required very frequently, not as a result of design changes, but as a result of computational requirements. Thus, reconfiguration is very important for enabling such applications. Unfortunately, these design changes are extremely difficult to implement and error prone due to a lack of automation tools and methodologies. Another consideration is that it can be very time-consuming. As an example, suppose there are 300 FPGAs in the system\(^3\), and that it takes 30 minutes to configure each FPGA. This means that it takes 150 computer-hours to implement the entire system for a single stage of change. Now, suppose that we need to make 100 changes (i.e., there are 100 stages) to this system. Completely re-configuring this system implies that we need 15,000 computer-hours to implement all the changes. Even if a farm of 50 computers were to be used for configuring the FPGAs in parallel, we would still need almost two weeks for the whole task. Thus, it is not desirable to completely re-configure all the FPGAs after each change. It is clear that the smaller the number of FPGAs that need to be reconfigured, the faster the time for reconfiguration. This paper addresses the problem of minimizing the number of chips that are needed to be reconfigured after each incremental change.

There are two main types of routing architectures for multi-FPGA designs, namely direct and indirect connection style. In the direct interconnection architecture, dedicated routing resources are provided between FPGAs. As such, the connections are often local and limited, perhaps only to its immediate neighbors. A natural implementation is the mesh architecture. Figure 1(a) shows an example of the 8-way mesh, where the FPGAs are arranged in a grid and connect only to its 8 immediate neighbors. Several successful
needs to use routing resources both between and within FPGAs. The direct method is simpler, faster and easily scaled, but such a multi-FPGA system. The Quickturn Mercury system [16] is an example of partial crossbar implementations. The Quickturn Mercury system [16] is an example of such a multi-FPGA system. In the indirect architecture, the FPGAs are connected to a pool of field programmable interconnect devices (FPIDs), and connections between FPGAs are made by programming the interconnect resources. Figure 1(b) shows an example of such a system. The partial crossbar is one of the more popular methods for this implementation. The Quickturn Mercury system [16] is an example of such a multi-FPGA system.

There are some tradeoffs involved between the two main architectures. The direct method is simpler, faster and easily scaled, but needs to use routing resources both between and within FPGAs in order to complete connections. It is particularly suited for computations that exhibit locality effect, where the code changes occur very slowly over time. On the other hand, an indirect-style interconnection architecture does not use routing resources within FPGAs except for FPGAs affected by logic changes. However, due to pin limitations of FPIDs, FPIDs cannot scale as the number of logic modules increases in the multi-FPGA system.

In this paper, we introduce the reconfiguration problem for direct style multi-FPGA systems. The underlying system already has a circuit implemented on it, and we are required to reconfigure the system by deleting some nets and adding new nets, subject to capacity constraints on each of the FPGAs and the connections between FPGAs. This corresponds to the reconfiguration changes for one stage of reconfigurable computing. Our objective is to reduce the number of FPGAs that need to be reconfigured in order to reduce FPGA reconfiguration time, since each reconfiguration of an FPGA involves re-placement and re-routing of circuits. There are two subproblems to be solved, which we call the Net Addition Problem (NAP) and the Net Deletion Problem (NDP).

In the NAP, we are given a set of terminals of nets to be placed and routed. We want to connect each net using the dedicated routing resources between FPGAs and within FPGAs. Our objective is to minimize the total number of FPGAs the nets pass through, since each of these FPGAs has to be reconfigured. In Figure 2, we show an example where three nets are to be connected. The multi-FPGA architecture is the 4-way mesh style (the connections are not shown in the diagram). Figure 2(a) shows a routing solution using the shortest path algorithm which requires that a total of 14 FPGAs be reconfigured. However, a better solution is given in Figure 2(b), where the number of FPGAs to be reconfigured is 11.

In the NDP, we are given the routing tree of a set of nets. We want to determine a minimum set of FPGAs such that each net is broken by some FPGA in the set (when reconfigured). It is often not necessary to reconfigure all the FPGAs in these routings because a break in a path causes the path to be electrically disconnected. The rest of the FPGAs that the nets passes through and the LUTs associated with the ports of the LUTs can be marked for reconfiguration later in order to save on the time for reconfiguration. The set of FPGAs chosen has to break every path in each net. Thus each net becomes (“lazily”) deleted when the set of FPGAs are reconfigured to disconnect the nets. Figure 3 shows an example. By reconfiguring the FPGAs shown in bold, every net is now broken.

We show that the net addition problem is a generalization of the NP-complete Steiner tree problem. Our algorithm for this problem is based on a modification of the Klein–Ravi approximation algorithm for the node-weighted Steiner tree problem. As for the net deletion problem, we prove that it is NP-complete but the problem is solvable in polynomial time for tree architectures. Based on the algorithm for trees, we design an effective heuristic algorithm for the general net deletion problem. Finally, we present an algorithm for solving the incremental reconfiguration problem which handles both placement of new gates and inter-FPGA routing for the direct style interconnection architecture.

The rest of this paper is organized as follows. Section 3 introduces some definitions and terminologies used in this paper. Section 4 introduces the Net Addition Problem. This problem is NP-complete, and we give an algorithm for determining the FPGAs to be reconfigured after placement and routing. Section 5 introduces the Net Deletion Problem. We show that this problem is also NP-complete, but show that deleting a net is polynomial-time solvable. We give an algorithm to determine a small set of FPGAs to reconfigure in order to delete all these nets. In Section 6, we show how to handle these two problems together. Since there are no existing test cases for this problems, we explain how the experiments are setup in Section 7. We show the results of our algorithm and that based on shortest-path. Finally, in Section 8, we give some conclusions and some extensions.

2. RELATED RESEARCH

Tessier in [19] dealt with the problem of incremental compilation in logic emulation. Their solution involves using a multi-way partitioning algorithm to incrementally partition the circuit to minimize the interconnectedness of the new circuit. Each partition is then implemented on an FPGA and incrementally routed. However, their
The length of a path between two vertices is the number of edges in the path. The cost of the path is the total of node costs and edge costs used in the path. The level of a node in a rooted tree is the length from the root. We say that \(u \leadsto v \), or that \(v \) is reachable from \(u \), if and only if there is a path from node \(u \) to node \(v \). The lowest common ancestor of two vertices \(u \) and \(v \) in a rooted tree (denoted \(\text{lca}(u, v) \)) is a vertex \(a \) such that \(a \leadsto u \) and \(a \leadsto v \) and such that the path length from \(a \) to \(u \) and \(a \) to \(v \) is the smallest possible (i.e., the length from the root to \(a \) is the longest possible). Note that the \(\text{lca} \) of any two vertices in a rooted tree is unique. Analogously, we define \(\text{lca}(S) \), where \(S \subseteq V \), to be the lowest vertex \(a \) such that \(a \leadsto v \) for all \(v \in S \). Again \(\text{lca}(S) \) is unique in tree structures for a given set \(S \).

A graph is planar if it can be drawn on a plane with no edges crossing. Such a drawing is known as a planar embedding. An embedding is orthogonal if the edges are drawn with only horizontal and vertical lines. A graph is a grid graph if the vertices are placed on a grid, and all edges of a node are to its neighbors on its immediate left, right, above or below in a geometric sense.

4. NET ADDITION PROBLEM

In this section, we describe the Net Addition Problem (NAP), and algorithms to solve this problem. We first give the definition of a classical graph problem.

Definition 1. (Node-Weighted Steiner Tree Problem): Let \(G = (V, E) \) be a graph with weights on each node \(v \), \(w_v \). Let \(N \subseteq V \) be a subset of vertices of \(V \). Find a tree \(TG(N) \) that connects all the vertices in \(N \), using, optionally, some nets in \(V \setminus N \), and such that \(w(TG(N)) \) is minimum, where \(w(TG(N)) = \sum_{v \in V(TG(N))} w_v \).

The nodes in \(TG(N) \) and \(N \) are called steiner points. This problem is a generalization of the NP-complete Steiner Tree Problem, where the weights are on the edges, since we can always convert the standard problem to the node-weighted version by inserting a vertex into every edge and putting the weight of the edge onto the inserted vertex. Thus, the node-weighted problem is NP-complete. If we are only interested in minimizing the number of steiner points, this problem is known as the unweighted version. This problem is also NP-complete [6].

We now consider the first problem we have to handle during multi-FPGA reconfiguration. The problem is given in an abstract graph-theoretic formulation.

Definition 2. (Net Addition Problem): Let \(G = (V, E) \) be the device graph of a multi-FPGA system and let \(c : V \cup E \rightarrow R^+ \) be the capacity function of the nodes and edges. Let \(N = \{N_1, \ldots, N_k\} \) be a set where \(N_i \) is a netlist for net \(i \). Determine a steiner forest, i.e., a set of vertices \(S = TG(N_1) \cup TG(N_2) \cup \ldots \cup TG(N_k) \), such that \(TG(N_i) \) is a connecting tree of \(N_i \) for \(1 \leq i \leq k \) and \(w(S) \) is minimum, subject to node and edge capacity constraints.
A connecting (steiner) tree $T_G(N_i)$ is a route of net i. Unlike usual routing problems where vertices must be exclusively used by nets, sharing of vertices between routes are allowed, since each vertex correspond to FPGAs. Figure 5 shows an example of NAP with five nets. The graph is an 8-way mesh, and the terminals of nets are labelled 1 through 5. Two distinct steiner trees with 13 vertices are used to connect the nets, with 4 vertices being steiner.

The regular Steiner Tree Problem (with edge weights) is a very well studied problem. However, there is much less study on the node-weighted Steiner tree problem, as it is harder than the standard problem. The Steiner Tree Problem can be approximated to the standard problem. The Steiner Tree Problem can be approximated to within a constant factor of the optimal [22], but the node-weighted version cannot be approximated to less than a logarithmic factor unless $P = \text{NP}$, where $P = \text{DTIME}[\text{polylog}]$ [14]. In [14], Klein and Ravi gave the first approximation algorithm for the node-weighted Steiner tree problem. It achieves an approximation ratio of $O(2\ln k)$, where k is the number of terminals to connect. Guha and Khuller then gave an algorithm that achieves an approximation ratio of $O(1.351nk)$ [6].

We now describe our algorithm RouteOneNet for routing a new net. Let T be the set of terminals in the net. Although the Guha-Khuller algorithm gives a slightly better theoretical bound on approximation, it requires repeated graph matching. This is not quite practical since we need to perform different placements and hence routing repeatedly. Our algorithm is a modification of the Klein-Ravi algorithm.

In each iteration, the algorithm scans through all the vertices of the tree and determines a node with small "average cost". As an example, consider the net in Figure 6(a). The node chosen is circled, together with the tree shown in thick lines. In the next step, the tree is collapsed into a terminal as shown in Figure 6(b). Another node is then chosen and another tree collapsed in Figure 6(c). The process is then repeated until one terminal is left. At this point, the tree is reconstructed as shown in Figure 6(e).

To choose the node and the tree to collapse, we compute the cost as follows: let t_j be the terminals of a net to be connected, and let $d(v, t_j)$ be the minimum weighted distance from v to t_j. Assume that the terminals are sorted in order of $d(v, t_j)$. This node has cost:

$$c_{vi} = \frac{w_v + \sum_{j=1}^{i-1} d(v, t_j)}{i} \text{ for } i = 2, \ldots, |T|.$$

We choose v and i with the smallest c_{vi} value. To ensure that v is not too far from the remaining terminals, we also compute the average distance, x_{vi}, and the average distance of these nodes from the source s also the average distance of these nodes from the node v, y_{vi}.

Then we pick the smaller of these two and add to $c_{vi} + d(s, v)$ and use this modified cost as our new cost, i.e.,

$$c'_{vi} = c_{vi} + \min\{x_{vi}, y_{vi}\} + d(s, v), \text{ for } i = 2, \ldots, |T|.$$

Our rationale is as follows. Since the remaining terminals are to be connected with this tree, we estimate the cost taken to connect the remaining terminals. If the remaining nodes are, on average, close to the source, then these should be connected to the source. Otherwise, the remaining nodes should be connected to v. Hence, our choice of quotient cost. Clearly, $(|T| - i) \cdot \min\{x_{vi}, y_{vi}\} + d(s, v)$ is an upper bound on the cost to connect the remaining trees. Note that this algorithm is not the same as maze routing. In maze routing, the least cost path is found iteratively as the algorithm considers one terminal at a time to connect to the partial tree constructed, starting with the source. This does not always produce a good steiner tree. In our algorithm, great care is taken to produce good steiner trees. In particular, the Klein-Ravi algorithm produces provably good trees.

We can perform routing of all new nets by iteratively routing one net at a time with RouteOneNet. Once a net is routed, the nodes that the net passes through will have its weight reduced by a certain amount. When routing subsequent nets, the nets will be encouraged to use those vertices that have already been used. In fact, no further cost is incurred by routing through such vertices, since a one time cost has already been paid for.
5. NET DELETION PROBLEM

Another common problem in the multi-FPGA reconfiguration problem is the Net Deletion Problem. As illustrated in Figure 3, we are given a set of routes of nets to be deleted. We want to choose a small set of FPGAs to reconfigure, so that all connections between the terminals of each net are broken. This problem can be simply stated as follows:

DEFINITION 3. Given a graph G representing the connectivity of the FPGAs, and a set R of net routings on this graph, find a minimum cardinality (or weighted) set of vertices whose removal disconnects all pairs of terminals of each net in R.

This set is known as the breaking set of (G, R). We now show that this problem is NP-complete if the underlying graph is a grid graph. Since the grid graph is one of the simplest implementation of the underlying connectivity of multi-FPGA systems, this means that the problem on other more general and interesting graphs like mesh, planar, etc., are also NP-complete. However, we show that if the underlying graph is a tree, the problem is polynomial time solvable.

We give the following definition and then state a well-known result which will be needed in the proof of Theorem 2:

DEFINITION 4. (Vertex Cover Problem): Given a graph $G = (V, E)$, find a minimum cardinality set $C \subseteq V$ such that for each edge $(u, v) \in E$, either $u \in C$ or $v \in C$.

THEOREM 1. Vertex Cover for planar graphs (PVC) is NP-complete [5].

THEOREM 2. The Net Deletion Problem over a grid graph is NP-complete.

Proof: NDP is in NP since given a breaking set B for an NDP over a grid graph G, we can easily check in polynomial time if for each routing tree $R_i \in R$, whether for every pair of terminals, u and v, there exists a vertex $w \in B$ such that w lies on the unique path between u and v in R_i.

We next show that NDP is NP-complete by reducing PVC to NDP over a grid graph. Given a PVC problem $G = (V, E)$, we construct an instance of the NDP problem (G', R'), where $G' = (V', E')$, by creating an orthogonal embedding of G such that the vertices are placed on a grid, and each edge becomes transformed to a path with orthogonal edges.

To do this, we first find the visibility representation of G. This is a geometric diagram where each vertex is mapped to a horizontal rectangle and each edge is mapped to a vertical line, only touching the two rectangles representing the vertices of its endpoints. Thus, no vertical line cut across any rectangle and no two vertical lines coincide. The algorithm of Kant [9] computes this representation in linear time using an area at most $O(|V| \times O(|V|))$. Figure 8(a) shows a planar graph and Figure 8(b) shows a corresponding visibility representation. We create an orthogonal embedding of G by shrinking each horizontal rectangle into a point on the left side of each rectangle. For each vertical connection originally touching the rectangle, a horizontal segment is added to connect to the new point. This causes each path to have at most two bends. Figure 8(c) shows the shrinking. For example, consider the edge $(2, 9)$ in Figure 8(b). Since the rectangles 2 and 9 are shrunk, the edge $(2, 9)$ now becomes a "I" shaped orthogonal path as shown in Figure 8(c). This stage requires polynomial time since each path have length at most $O(|V|^2)$ in the orthogonal embedding. Once this is done, we simply add additional verticals representing the FPGAs to fill the entire grid. At most $O(|V|^2)$ extra vertices are needed. Hence, the transformation takes polynomial time.

By the way we constructed the horizontal segments, all turns are always to the left, i.e., "I" or "L" shaped turns only. "L" and "I" shaped turns are not possible. Neither can there be any crossing of paths, i.e., "X", since by definition of the visibility representation, no vertical edge can cross a rectangle. Also, whenever an orthogonal path turns left at an FPGA, other orthogonal paths passing through that vertex must be horizontal. It is also easy to see that all orthogonal paths connect to only two endpoints (i.e., all nets are two-terminal).

Let $f : V \rightarrow V'$ be a function that correlates a vertex in V with a vertex in V', such that $v' = f(v)$ if v' in the orthogonal embedding is obtained by shrinking the rectangle representing v in the visibility representation.
representation. Conversely, \(f^{-1}(v') = v \) if \(v' \) is the corresponding vertex of \(v \) in the orthogonal embedding, and \(f^{-1}(v') \) is undefined if it was a vertex added at the last stage to fill the grid. Also, we define \(f(S) = \{ f(v) \mid v \in S \} \). For each edge \((u, v) \in E\), we define the corresponding orthogonal path in \(G' \) as \(P_{f(u), f(v)} \). Let \(G' \) be the grid graph created above and let \(R' = \{ P_{f(u), f(v)} \mid (u, v) \in E \} \). Therefore, the instance of NDP we create is \((G', R')\). We now show that \(G \) has a vertex cover of size \(k \) if and only if \((G', R')\) has a breaking set of size \(k \).

Suppose \(G \) has a vertex cover \(C \) of size \(k \). Then for every edge \((u, v) \in G\), either \(u \in C \) or \(v \in C \). Let \(C' = f(C) \). Then in \(G' \), for every path \(P_{f(u), f(v)} \in R' \), either \(f(u) \in C' \) or \(f(v) \in C' \). Thus, the vertices in \(C' \) breaks all the paths in \(R' \). Hence \(C' \) forms a breaking set of \((G', R')\), and \(|C'| = |C| \).

Now suppose that \(B \) forms a breaking set of \((G', R')\) of size \(k \). We first show that there exists a breaking set \(B' \) such that for each vertex \(v' \in B' \), \(f^{-1}(v') \in V \). Suppose for some \(v' \in B' \), \(f^{-1}(v') \) is undefined, then \(v' \) lies completely within an orthogonal path \(P \), i.e., \(v' \) is not at the end point. If \(v' \) lies on a horizontal segment, then we can follow \(P \) to the left until it ends an endpoint. Note that it is not possible for a concurrent path to leave this horizontal segment because all turnings are to the left. If \(v' \) lies on a vertical segment, then \(v' \) breaks only \(P \) since no vertical segment overlap. We now follow \(P \) down till it hits an endpoint of the path, or it turns left. Then the situation is the same as above. Let the endpoint reached be \(v'' \). In either case, it is clear that \(v'' \) breaks the path(s) it originally breaks (in fact, it may break more paths). Therefore, the set \(B' = \{ v' \} \cup \{ v'' \}\) also forms a breaking set with the same cardinality. Applying the above repeatedly, we can find a breaking set \(B' \) such that for each vertex \(v' \in B' \), \(f^{-1}(v') \in V \), and \(|B'| = |B| = k \).

Since \(B' \) is a breaking set of \((G', R')\) such that \(B' \subseteq f(V) \), then for each path \(P_{f(u), f(v)} \in R' \), either \(u \in B' \) or \(v \in B' \). Let \(C = \{ f^{-1}(v') \mid v' \in B' \} \). Then, for each edge \((u, v) \in E\), either \(f^{-1}(u) \in C \) or \(f^{-1}(v) \in C \). Hence, \(C \) forms a vertex cover of \(G \) and \(|C| = k \).

Corollary 2.1. NDP is NP-complete over mesh and planar topologies.

Theorem 3. NDP is polynomial-time solvable for a single net.

Proof: Consider algorithm BreakRoute in Figure 9. Let \(B \) be the breaking set obtained from the algorithm and suppose \(B \) is a breaking set such that \(|B'| < |B| \). We arrange the elements of \(B \) and \(B' \) in the order in which the vertices are processed. Let \(x \) be the first vertex in this order that is in \(B' \setminus B \). Let \(x \) break the path between two remaining terminals \(t_1 \) and \(t_2 \), where \(t_1 \) and \(t_2 \) have the lowest \(lca \). Clearly, \(lca(t_1, t_2) \) breaks the path between \(t_1 \) and \(t_2 \) and that \(lca(t_1, t_2) \in B \). Then either \(t_1 \) or \(t_2 \) is a descendant of \(x \), otherwise \(x \) can never break the path between \(t_1 \) and \(t_2 \). Without loss of generality, assume that \(t_1 \) is a descendant of \(x \). If \(x = lca(t_1, t_2) \), then \(x \) will be found by the algorithm since it is the lowest \(lca \), contradicting our assumption. Hence \(x \neq lca(t_1, t_2) \). In this case, if \(lca(t_1, t_2) \) is a descendant of \(x \), then \(x \) cannot break the path between \(t_1 \) and \(t_2 \), so \(lca(t_1, t_2) \) must be an ancestor of \(x \). However, if we replace \(x \) with \(lca(t_1, t_2) \), then \(lca(t_1, t_2) \) breaks the path between \(t_1 \) and \(t_2 \), and we still get a breaking set with the same cardinality. Notice that \(lca(t_1, t_2) \) is what will be found by the algorithm. Hence, if we perform the above replacement repeatedly, we get a breaking set that is the same as that found by the algorithm, yet with a smaller cardinality, leading to a contradiction. Hence, the algorithm gives us the optimal solution.

The algorithm can be made to run in linear time as follows: it traverses \(R \) in depth-first order. At the leaves (terminals), the number of descendent terminals to break, \(d \), is set to 1. As it backtracks the tree, it collects \(d \) from its children. This is the number of terminals it needs to break at the node. If \(d > 1 \), then the node is an \(lca \) of two of the remaining terminals and can be marked for reconfiguration. \(d \) is then set to zero and passed to its parent.

The algorithm BreakRoute can “break” one net optimally. It can be generalized to the algorithm Break which can simultaneously “break” all nets if the union of all the nets is a tree. Optimality of Break will be presented in the proof of the next theorem. The algorithm BreakRoute is the basic procedure to solve the general NDP. We iteratively look for a maximal set of nets such that their union is a tree and apply Break to delete the nets in the set.

Theorem 4. NDP is polynomial-time solvable for tree topology.

Proof: The proof is similar to that of the algorithm BreakRoute. Let \(B \) be the breaking set obtained from algorithm Break and suppose \(B' \) is a breaking set such that \(|B'| \leq |B| \). We arrange the elements of \(B \) and \(B' \) in the reverse topological order in which the vertices are processed. Let \(x \) be the first vertex in this order that is in \(B' \setminus B \). Let \(x \) break the path between \(t_1 \) and \(t_2 \), where \(t_1 \) and \(t_2 \) are terminals belonging to route \(R_t \) and have the lowest \(lca \). Without loss of generality, assume that \(t_1 \) is a descendant of \(x \), but \(t_2 \) is not. Let \(y \) be the nearest ancestor of \(x \) that is an \(lca \) of any two remaining terminals of any net (note that \(y \) may or may not be \(lca(t_1, t_2) \)). Then clearly, \(lca(t_1, t_2) \) is either \(y \) or an ancestor of \(y \). If we replace \(x \) with \(y \), then \(y \) breaks the path between \(t_1 \) and \(t_2 \), and we still get a breaking set with the same cardinality. Notice that \(y \) is what will be found by the algorithm. Hence, if we perform the above replacement repeatedly, we get a breaking set that is the same as that found by the algorithm, yet with a smaller cardinality, leading to a contradiction. Hence, the algorithm gives us the optimal solution.

This algorithm runs in polynomial time. It keeps track of the number of descendent terminals, \(d[t] \), it needs to break for each net \(t \). At the terminal of a net \(t \), \(d[t] \) is set to 1. As it backtracks the tree, the number is collated from its children. If \(d[t] > 1 \) for some \(j \), then it is an \(lca \) of two remaining terminals of net \(j \). This node is then marked for reconfiguration, and all \(d[j] \) set to zero. Since all the updates are local, it runs in polynomial time.
Abstractly, we are given the device graph \((G, N) \). The multi-FPGA incremental recon
figuration problem involves the modification of a circuit already implemented on the system. Abstractly, we are given the device graph \(G \), a circuit \(H \) with some nodes already placed \((F) \) and the rest to be placed and routed on \(G \), and also a set of routes \(R \) to be disconnected. The objective is to determine a placement and routing of the new circuit such that the number of FPGA resources to reconfigure is minimum, subject to node and edge capacity constraints. The set of circuit nodes \(F \) that have fixed positions are the connections to the existing circuit.

Clearly, the combined problem is also NP-complete. We solve this problem problem using simulated annealing. During each simulated annealing move, it solves the NAP followed by the NDP. Our objective is to reduce the number of FPGA resources that need to be reconfigured. The deletion algorithm is the same in both our steiner-tree based algorithm and the shortest path based algorithm. The results are summarized in Table 1. For example, for the circuit \(\text{Ex1} \) the entry using shortest path is \(43/521/1 \), which means that it requires reconfiguration of 43 FGAs, a total length of 521 units and a maximum overflow of 1. As can be seen, the average improvements in the number of FGAs to be reconfigured is about 15%, while some improvements of 20-30% are also seen. Since reconfiguring each FPGA can take hours, this reduction can translate to significant savings in overall reconfiguration time.

6. INCREMENTAL RECONFIGURATION PROBLEM

The multi-FPGA incremental reconfiguration problem involves the modification of a circuit already implemented on the system. Abstractly, we are given the device graph \(G \), a circuit \(H \) with some nodes already placed \((F) \) and the rest to be placed and routed on \(G \), and also a set of routes \(R \) to be disconnected. The objective is to determine a placement and routing of the new circuit such that the number of FPGA resources to reconfigure is minimum, subject to node and edge capacity constraints. The set of circuit nodes \(F \) that have fixed positions are the connections to the existing circuit.

Clearly, the combined problem is also NP-complete. We solve this problem problem using simulated annealing. During each simulated annealing move, it solves the NAP followed by the NDP. Our objective is to reduce the number of FPGA resources that need to be reconfigured. The deletion algorithm is the same in both our steiner-tree based algorithm and the shortest path based algorithm. The results are summarized in Table 1. For example, for the circuit \(\text{Ex1} \) the entry using shortest path is \(43/521/1 \), which means that it requires reconfiguration of 43 FGAs, a total length of 521 units and a maximum overflow of 1. As can be seen, the average improvements in the number of FGAs to be reconfigured is about 15%, while some improvements of 20-30% are also seen. Since reconfiguring each FPGA can take hours, this reduction can translate to significant savings in overall reconfiguration time.

7. EXPERIMENTAL RESULTS

To design some meaningful test cases, we use the suite of MCNC benchmark circuits as our starting point. Each circuit was treated as a new sub-circuit to be placed and routed on a multi-FPGA system with a circuit already implemented on it. Each node in the circuit represents a 4-LUT (the most popular logic block among commercial FPGA vendors) in order to get reasonably sized circuits for our experiments. We randomly generated a small set of fixed placement for the I/O nodes and some of the internal nodes. The fixed nodes formed about 30% of the total nodes, and the rest are determined by the algorithm. To simulate the fact that an existing circuit is already implemented on the multi-FPGA system, we randomly generate node capacities for each FPGA using the uniform distribution with a mean of 100 4-LUTs for most circuits and 200 4-LUTs for the larger circuits. The edge capacities are not taken into account (as in the case where virtual wires are used). However, it is a simple extension to take edge capacities into account in the case where virtual wires are not used. We assume that, for each FPGA a net passes through, it uses up some \(\eta \) unit of the FPGA resources. We used \(\eta = 1 \) in our experiments. Note that \(\eta \) can be non-uniform. The topology graph used is the 8-way mesh with horizontal wraparound.

For comparison purposes, we also implemented a method using shortest path as the algorithm for connecting nets. The nets are routed in turn and the cost of FGAs that have already been used are set to zero. In other words, the algorithm will try to reuse FGAs that already need to be reconfigured. The deletion algorithm is the same in both our steiner-tree based algorithm and the shortest path based algorithm. The results are summarized in Table 1. For example, for the circuit \(\text{Ex1} \) the entry using shortest path is \(43/521/1 \), which means that it requires reconfiguration of 43 FGAs, a total length of 521 units and a maximum overflow of 1. As can be seen, the average improvements in the number of FGAs to be reconfigured is about 15%, while some improvements of 20-30% are also seen. Since reconfiguring each FPGA can take hours, this reduction can translate to significant savings in overall reconfiguration time.

8. CONCLUDING REMARKS

In this paper, we formulated the problem for reconfiguration in multi-FPGA systems that uses the direct connection architecture. Our objective is to reduce the number of FGAs to reconfigure in order to reduce the time needed for such reconfiguration. We formulated the Net Addition Problem and the Net Deletion Problem for this architecture, and showed that the Net Addition Problem is a generalization of the NP-complete Steiner Tree Problem and is therefore NP-complete. We also proved that the Net Deletion Problem is NP-complete over grid graphs, mesh graphs and also planar graphs. However, we prove that it is polynomial-time solvable for tree architectures. We gave algorithms to solve both problems and
Table 1: Reconfiguration results for test cases. Each test case is a sub-circuit to be placed and routed on a multi-FPGA system with a circuit already implemented on it. Each node in this sub-circuit represents an LUT. The shortest-path based net addition algorithm is a simpler and reasonable alternative to RouteOneNet. A set of nets is also randomly generated to simulate nets to be deleted.

| Circuit | $|V(H)|$, $|N|$, $|F|$ | Shortest Path $(n/1/f)$ | Ours $(n/i/f)$ | % Imp. on n |
|---------|----------------|-------------------|---------------|-----------|
| Ex1 | (107,105,38) | 43/521/1 | 37/718/0 | 14.0 |
| Ex2 | (116,83,74) | 35/570/0 | 30/378/0 | 14.3 |
| Ex3 | (179,153,59) | 54/996/0 | 37/923/0 | 31.5 |
| Ex4 | (482,460,134)| 85/3767/0 | 79/3628/0 | 7.1 |
| Ex5 | (161,153,47) | 42/947/0 | 39/921/0 | 7.1 |
| Ex6 | (116,83,74) | 43/507/0 | 38/339/0 | 11.6 |
| Ex7 | (779,682,302)| 50/1821/0 | 43/1540/0 | 14.0 |
| Ex8 | (235,209,87) | 56/1904/0 | 38/1056/0 | 32.1 |
| Ex9 | (208,202,67) | 56/1397/0 | 41/4193/0 | 26.8 |
| Ex10 | (490,487,157)| 72/4030/0 | 73/3703/0 | -1.4 |
| Ex11 | (274,247,79) | 57/1671/0 | 44/1802/0 | 22.8 |
| Ex12 | (340,501,170)| 30/567/0 | 30/562/0 | - |
| Ex13 | (1073,1027,325)| 59/8212/0 | 44/8570/0 | 25.4 |
| Ex14 | (1253,1061,482)| 71/6959/0 | 49/7251/0 | 31.0 |
| Ex15 | (565,530,156)| 38/1469/0 | 37/1383/0 | 2.7 |
| Ex16 | (821,683,311)| 49/2057/0 | 41/1724/0 | 16.3 |
| Ex17 | (166,161,54) | 47/1088/0 | 38/1315/0 | 19.1 |
| Ex18 | (443,340,243)| 64/2959/0 | 47/3220/1 | 26.6 |
| Ex19 | (231,229,74) | 35/744/0 | 36/548/0 | -2.9 |
| Ex20 | (495,480,158)| 36/1013/0 | 35/1238/0 | 2.8 |
| Ex21 | (503,487,158)| 79/5372/0 | 80/4362/0 | -1.3 |
| Ex22 | (1123,112,45)| 53/597/0 | 43/635/0 | 18.9 |
| Ex23 | (226,222,64) | 57/1611/0 | 44/1602/0 | 22.8 |
| Ex24 | (100,79,46) | 38/477/0 | 35/396/0 | 7.9 |
| Ex25 | (309,275,90) | 54/2067/5 | 49/2130/0 | 9.3 |

Table 1: Reconfiguration results for test cases. Each test case is a sub-circuit to be placed and routed on a multi-FPGA system with a circuit already implemented on it. Each node in this sub-circuit represents an LUT. The shortest-path based net addition algorithm is a simpler and reasonable alternative to RouteOneNet. A set of nets is also randomly generated to simulate nets to be deleted.

presented a simulated annealing approach that solves both problems in a reconfiguration setting. The number of FPGAs needed for reconfiguration in our approach is about 15% less than using a more direct shortest path approach.

As a future research, the problems investigated in this paper should also be investigated for the indirect connection architecture. As the architecture is very different than that considered in this paper, a totally different approach is probably necessary. Also, this problem should also be studied for hybrid architectures that combine good features of the different architectures.

9. REFERENCES

