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Abstract

A genetic algorithm (GA) is a robust problem-solving method

based on natural selection. Hardware's speed advantage and

its ability to parallelize o�er great rewards to genetic al-

gorithms. Speedups of 1{3 orders of magnitude have been

observed when frequently used software routines were im-

plemented in hardware by way of reprogrammable �eld-pro-

grammable gate arrays (FPGAs). Reprogrammability is es-

sential in a general-purpose GA engine because certain GA

modules require changeability (e.g. the function to be opti-

mized by the GA). Thus a hardware-based GA is both feasi-

ble and desirable. A fully functional hardware-based genetic

algorithm (the HGA) is presented here as a proof-of-concept

system. It was designed using VHDL to allow for easy scala-

bility. It is designed to act as a coprocessor with the CPU of

a PC. The user programs the FPGAs which implement the

function to be optimized. Other GA parameters may also

be speci�ed by the user. Simulation results and performance

analyses of the HGA are presented. A prototype HGA is de-

scribed and compared to a similar GA implemented in soft-

ware. In the simple tests, the prototype took about 6% as

many clock cycles to run as the software-based GA. Further

suggested improvements could realistically make the HGA

2{3 orders of magnitude faster than the software-based GA.

Keywords: Parallel Genetic Algorithms, Function Opti-

mization, Field Programmable Gate Arrays (FPGAs), Per-

formance Acceleration, Performance Evaluation.

1 Introduction

A genetic algorithm (GA) is an optimization method based

on natural selection that is simple to implement [10]. Ge-

netic algorithms have been applied to many hard optimiza-

tion problems including VLSI layout optimization, boolean

satis�ability and the Hamiltonian circuit problem. They

have been recognized as a robust general-purpose optimiza-

tion technique. But application of GAs to increasingly com-

plex problems can overwhelm software implementations of

GAs, causing unacceptable delays in the optimization pro-

cess. This is true of any non-trivial application of GAs if the

search space is large. It follows that a hardware implemen-

tation of a GA would be applicable to problems too complex

for software-based GAs.

Because a general-purpose GA engine requires certain

parts of its design to be easily changed (e.g. the function to
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be optimized), a hardware-based genetic algorithm was not

feasible until �eld-programmable gate arrays (FPGAs) were

developed. Reprogrammable FPGAs (those programmed

via a bit pattern stored in a static RAM) are essential to

the development of the HGA system.

Some simple empirical analyses of software-based GAs

done by us indicated that in basic GAs, a small number

of simple operations and the function to be optimized were

executed frequently during the run. Neglecting I/O, these

operations accounted for 80{90% of the total execution time.

If m is the population size (number of strings manipulated

by the GA in one iteration) and g is the number of gener-

ations (GA iterations), a typical GA would execute each of

its operations mg times. For complex problems, large val-

ues of m and g are required, so it is imperative to make the

operations as e�cient as possible. Work by Spears and De

Jong [7] indicates that for NP-complete problems, m = 100

and values of g on the order of 104{105 may be necessary

to obtain a good result and avoid premature convergence

to a local optimum. Pipelining and parallelization can help

provide the desired e�ciency, and these are easily done in

hardware.

This work describes the HGA, an implementation of a

hardware-based genetic algorithm. Because of the repro-

grammability of FPGAs, the HGA is a general-purpose GA

engine which is useful in many applications where conven-

tional GA implementations are too slow. The HGA works

as a coprocessor with the CPU of a PC and gives its user

the ability to specify many of the GA parameters.

The goals of our work were to: (a) propose an archi-

tecture for a GA engine that can employ a combination

of pipelining and parallelization to achieve speedups, (b)

demonstrate the feasibility of a GA engine by developing

a prototype HGA coprocessor, and (c) collect accurate sim-

ulation data and demonstrate its usefulness in comparing

the performance of the HGA versus a software-based GA.

This work builds upon other research in recon�gurable

hardware systems which improved system performance by

mapping some or all software components to hardware us-

ing reprogrammable FPGAs. Some of this work includes

Gokhale et. al.'s Splash project [9], Bertin et. al.'s program-

mable active memory (PAM) architecture [4], Athanas and

Silverman [3] with their development of the PRISM-I system,

the FPGA-based neural network by Eldredge and Hutch-

ings [8] which utilizes run-time recon�guration, and Wirthlin

et. al.'s Nano Processor (nP) [15]. This type of research has

inspired the manufacture of commercial products, includ-

ing Virtual Computer Corporation's line of Virtual Com-

puters [5] and the X-12 system from National Technologies

Incorporated [12]. Both of these product lines are intended

for use in recon�gurable hardware systems.

So far little work has been done in implementing a hard-

ware-based GA. DCP Research Corporation in Edmonton,

Alberta has implemented a suite of proprietary GAs in a

text compression chip [14], and Tetsuya Higuchi et. al. at

the Electrotechnical Laboratory in Tsukuba are developing



self-adapting hardware which uses a GA to modify hard-

ware con�guration bit strings that control the connections

in programmable logic devices (PLDs) [1]. Unfortunately,

the amount of current work in hardware GAs is small and

the application areas di�er greatly from the intention of this

work.

For brevity's sake, many details of this work are omitted.

For more information on any of the following sections (in-

cluding VHDL source code for the design itself), the reader

may refer to [13].

2 Background on Genetic Algorithms

A genetic algorithm (GA) is a natural selection-based op-

timization technique. There are four major di�erences be-

tween GA-based approaches and conventional problem-solv-

ing methods: (a) GAs work with a coding of the parameter

set, not the parameters themselves; (b) GAs search for op-

tima from a population of points, not a single point; (c)

GAs use payo� (objective function) information, not other

auxiliary knowledge such as derivative information used in

calculus-based methods; and (d) GAs use probabilistic tran-

sition rules, not deterministic rules. These four properties

make GAs robust, powerful, and data-independent [10].

A GA is a stochastic technique with simple operations

based on the theory of natural selection. The basic op-

erations are selection of population members for the next

generation, \mating" these members via crossover of \chro-

mosomes," and performing mutations on the chromosomes

to preserve population diversity so as to avoid convergence

to local optima. Finally, the �tness of each member in the

new generation is determined using an evaluation (�tness)

function. This �tness in
uences the selection process for the

next generation.

The GA operations selection, crossover and mutation pri-

marily involve random number generation, copying, and par-

tial string exchange. Thus they are powerful tools which are

simple to implement. Its basis in natural selection allows

a GA to employ a \survival of the �ttest" strategy when

searching for optima. The use of a population of points

helps the GA avoid converging to false peaks (local optima)

in the search space.

A Genetic Algorithm Example

As a simple example, imagine a population of four strings,

each with �ve bits. Also imagine an objective function f(x) =
2x. The goal is to optimize (in this case maximize) the ob-

jective function over the domain 0 � x � 31. Now imagine a

population of the four strings in Table 1, generated at ran-

dom before GA execution. The corresponding �tness values

and percentages come from the objective function f(x):
The values in the \fi=

P
fi" column provide the prob-

ability of each string's selection. So initially 11000 has a

38.1% chance of selection, 00101 has an 7.9% chance, and

so on. The results of the selections are given in the \Actual

Count" column of Table 1. As expected, these values are

similar to those in the \Expected Count" column.

After selecting the strings, the GA randomly pairs the

newly selected members and looks at each pair individually.

For each pair (e.g. A = 11000 and B = 10110), the GA

decides whether or not to perform crossover. If it does not,

then both strings in the pair are placed into the population

with possible mutations (described below). If it does, then

a random crossover point is selected and crossover proceeds

as follows:

A = 1 1 j 0 0 0 B = 1 0 j 1 1 0

Table 1: Four strings and their �tness values.

Expected

String Fitness fi = Count Actual

i xi f(xi) = 2xi fi=
P

fi fi=f Count

1 11000 48 0.381 1.524 2

2 00101 10 0.079 0.317 0

3 10110 44 0.349 1.397 1

4 01100 24 0.191 0.762 1

Sum 126 1.000 4.000 4

Avg 31.5 0.250 1.000 1

Max 48 0.381 1.524 2

are crossed and become

A0

= 1 1 1 1 0 B0

= 1 0 0 0 0.

Then the children A0 and B0 are placed in the population

with possible mutations. The GA invokes the mutation op-

erator on the new bit strings very rarely (usually on the or-

der of � 0:01 probability), generating a random number for

each bit and 
ipping that particular bit only if the random

number is less than or equal to the mutation probability.

After the current generation's selections, crossovers, and

mutations are complete, the new strings are placed in a new

population representing the next generation, as shown in Ta-

ble 2. In this example generation, average �tness increased

by approximately 30% and maximum �tness increased by

25%. This simple process would continue for several gener-

ations until a stopping criterion is met.

Table 2: The population after selection and crossover.

After Crossover After Fitness fi =
Reprod. Mate Pt. Crossover f(xi) = 2xi
11j000 x3 2 11110 60

1j1000 x4 1 11100 56

10j110 x1 2 10000 32

0j1100 x2 1 01000 16

Sum 164

Avg. 41

Max 60

3 The HGA System

Conceptually, the HGA �ts in a general computing envi-

ronment in the following way. The front end of the HGA

system consists of a simple interface program running on a

personal computer or workstation. This interface gets the

GA parameters (Section 3.1) interactively from the user and

writes them into a memory which is shared with the back

end, which consists of the HGA hardware. Additionally, the

user speci�es the �tness function in some programming or

other speci�cation language (e.g. C or VHDL). Then soft-

ware translates the speci�cation into a hardware image and

programs the FPGA(s) which implement the �tness func-

tion. This software-to-hardware translator could be similar

in function to the PRISM-I system [3] or to an HDL synthe-

sizer. Then the front end sends a \Go" signal to the back

end. When the HGA back end detects the signal, it runs the

GA based on the parameters already in the shared mem-

ory. When done, the back end sends a \Done" signal to the

front end. The front end detects this signal and reads the

�nal population from the shared memory. The population

is then written to a �le for the user to view.



The HGA hardware was designed using VHDL. This al-

lowed the design to be speci�ed behaviorally rather than

structurally. It also allowed for general (parameter-indepen-

dent) designs to be created, facilitating scaling of the design.

The speci�c designs implemented from the general designs

depend upon designer-speci�ed parameters provided at im-

plementation time, e.g. the maximum width of the popu-

lation members. When the parameters are speci�ed, the

design can be implemented with a VHDL synthesizer such

as AutoLogic from Mentor Graphics.

3.1 The Overall HGA Design

The desire was to create a VHDL implementation of a gen-

eral genetic algorithm similar to that in Figure 1 which

would allow the HGA's user to choose several GA param-

eters. The user-controlled parameters are the initial popu-

lation's size and its members, the number of generations in

the HGA run, the initial seed for the pseudorandom num-

ber generator, and the mutation and crossover probabilities.

Values for these parameters would be selected by the user

in software which would send the appropriate signals to ini-

tialize and start the HGA.

3.2 The Modules and Their Functions

The modules in Figure 1 are patterned after the GA oper-

ators de�ned in Goldberg's simple genetic algorithm (SGA)

[10]. The HGA modules operate concurrently with each

other and together form a coarse-grained pipeline. All mod-

ules are written in VHDL and are independent of the operat-

ing environment and implementation technology (e.g. Xilinx

FPGAs or fabricated chips) except for the memory interface

module. The functionality of this module varies according

to the physical memory attached to it and the desired inter-

face between the HGA and its user. The basic functionality

of the HGA design of Figure 1 is as follows.

1. After all the parameters have been loaded into the shared

memory, the memory interface module (MIM) receives

a \Go" signal from the front end. The MIM acts as the

main control unit of the HGA and is the HGA's sole

interface to the outside world.

2. The MIM noti�es the �tness module (FM), crossover/mu-

tation module (CMM), the pseudorandom number gen-

erator (RNG) and the population sequencer (PS) that

the HGA is to begin execution. Each of these modules

requests its required parameters from the MIM, which

fetches them from the appropriate places of the shared

memory.

3. The population sequencer starts the pipeline by re-

questing population members from the MIM and pass-

ing them along to the selection module.

4. The task of the selection module (SM) is to receive new

members from the PS and judge them until a pair of

su�ciently �t members is found based on a random

number. At that time it passes the pair to the crosso-

ver/mutation module (CMM), resets itself, and restarts

the selection process.

5. When the crossover/mutation module receives a selected

pair of members from the SM, it decides whether to per-

form crossover and mutation based on random values

sent from the RNG. When done, the new members are

sent to the �tness module for evaluation.

6. The �tness module evaluates the two new members

from the CMM and writes the new members to memory

through the MIM. The FM also maintains some records

concerning the current state of the HGA that are used

by the SM to select new members and by the FM to

determine when the HGA is �nished.

7. The above steps continue until the FM determines that

the current HGA run is �nished. It then noti�es the

MIM of completion which in turn shuts down the HGA

modules and sends the \Done" signal to the front end.

Since the modules of the HGA system were written en-

tirely in VHDL, speci�c aspects of the design such as I/O

bus size, storage facility size, etc. can be speci�ed in terms

of parameters which can be easily changed when the need

arises. The interesting parameters of the HGA are n, the
maximum width in bits of the population members, fw, the
maximum width in bits of the �tness values, mmax, the max-

imum size of the population, and the maximum number of

generations gmax. When module parallelization is involved

(Section 3.3), the parameter nsel indicates the number of

parallel selection modules. These parameters are speci�ed

at VHDL compile time and should not be confused with the

HGA run time parameters described in Section 3.1.

3.3 Design Pipelining and Parallelization

The design in Figure 1 is a coarse-grained pipeline. This is

evident by noting that when a module completes a task as

described in Section 3.2, it immediately awaits more input

to repeat processing. Because of this pipelining, GA opera-

tions do not have to be suspended while other GA operations

run, which happens in a sequential software implementation.

Thus a signi�cant speedup over software is realized.

Parallelization of HGA modules is also possible. For ex-

ample, multiple selection modules can be inserted, all of

which feed into a single CMM (Figure 2). To extend the

parallelization, the selection-crossover-�tness pipeline could

be replicated to form several parallel pipelines by replicat-

ing the highlighted portion (dotted box) of Figure 2. In this

case, the duty of writing new members to memory and main-

taining records of the HGA's state (see Section 3.2, Item 6)

would have to be shifted from the FM to a new module called

the memory writer. This would be necessary because par-

allel �tness modules would have di�culty maintaining these

values among themselves.

The highest degree of parallelism of the HGA involves

banks of an arbitrary number of selection, crossover/muta-

tion and �tness modules. Connectivity is complete in the

sense that each selection module is connected to each CMM

and each CMM is connected to each FM. This con�gura-

tion would maximize the utilization of each module but also

complicates the communication between modules.

The pipelined and parallel con�gurations presented in

this section can be combined in myriad ways, each with

di�erent degrees of communication complexity and overall

e�ciency. To simplify the design process, only the con�gu-

rations in Figures 1 and 2 were created, analyzed and sim-

ulated (Sections 4.1 and 4.2). Also, due to area constraints

on the FPGAs, only the con�guration in Figure 1 was im-

plemented in a prototype (Section 4.4).

4 Design Veri�cation and Analysis

The HGA con�gurations pictured in Figures 1 and 2 were

simulated to verify correct functionality and to analyze the

performance of the design. The performance analysis in-

cluded analyzing the pipelines to identify bottlenecks using

techniques described in [11].
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4.1 Veri�cation of Correct Functionality

To verify the design's correctness, the modules were con-

nected and simulated. During simulation each module was

scrutinized to ensure correct functionality. During these

simulations the HGA ran on di�erent �tness functions to

see how well the functions were optimized. In all tests, the

population was optimized well. In a small number of gen-

erations, average �tness increased substantially as did the

number of optimal strings in the population. This coupled

with the scrutinized VHDL simulation validates the correct

functionality of the HGA.

4.2 Performance Analysis

After correct functionality of the HGA was con�rmed, its

performance was analyzed. First the modules in the pipe-

lines pictured in Figures 1 and 2 were analyzed to determine

the parameters which impact asynchronous pipeline perfor-

mance. These parameters are de�ned in [11] as follows.

1. The actual service time si of pipeline stage (module) i
is the amount of time stage i takes to receive a message

at its inputs, process it and send the output to the next

stage.

2. The 
ow rate Fi of stage i is the number of messages

arriving at stage i during the entire run.

3. The normalized service time Snormi
of stage i is de�ned

as Snormi
= (si � Fi)=Fout where Fout, the 
ow rate

out of the pipeline, acts as a normalizing factor. In

this analysis, Fout = mg=2 because mg members are

selected in the GA run a pair at a time.

Once Snormi
was determined for each stage, all the Snormi

s

were compared. The stage with the highest Snormi
was de-

clared to be the pipeline bottleneck.

Each HGA module was analyzed and equations derived

to estimate its actual service time and 
ow rate. Then ap-

propriate parameters were substituted into the equations to

determine the value of Snormi
for each module. The maxi-

mum value of Snormi
was Snorm0

(associated with the popu-

lation sequencer), so the population sequencer was identi�ed

as the bottleneck of the HGA. After analyzing each module,

the HGA was simulated to determine the actual and normal-

ized service times for each module. The simulation results

approximate the results of equation evaluations and verify

that the population sequencer is the bottleneck of the HGA

system. Both the equation evaluations and simulation re-

sults appear in Table 3. The heading \nsel = 1" implies

one selection module was used (Figure 1), and \nsel = 2"

implies two parallel selection modules were used (Figure 2).

To remove a bottleneck, Kenyon et. al. [11] suggest either

parallelizing the bottleneck stage or breaking it into smaller

stages. Due to the functional simplicity of the population se-

quencer and its tight coupling with the MIM, neither of these

options is possible. However, parallelizing the selection mod-

ules increases the system's overall selection rate and speeds

up the run, e�ectively reducing the population sequencer's

normalized service time. But this will only work up to a

certain limit after which the bottleneck will shift from the

population sequencer to the �tness module. Our results sug-

gest that this limit is nsel � 5 or 6 for g 2 f10; 20g and

m = 32. Additionally, there is a limit to nsel after which in-



Table 3: Bottleneck analysis function evaluations and simu-

lation results of the HGA tests.

Module Normalized Service Time

Name nsel = 1 nsel = 2

Anal. Simul. Anal. Simul.

Sequencer 100.768 102.064 52.568 53.922

Selection 20.992 20.072 10.496 10.157

Crossover 5.000 7.263 5.000 8.454

Fitness 19.000 17.979 19.000 17.549

creased parallelization is no longer cost e�ective. This limit

is the point where the cost of the additional resources re-

quired for parallelization outweighs the bene�t. A plot of

total execution time (T ) versus nsel (not shown) indicates
that setting nsel to 3 or 4 will be the limit for achieving sig-

ni�cant speedup. After that point, increasing nsel provides
only a slight improvement in T but will add a signi�cant

area cost due to the complexity of the selection modules. It

was also found that T and Snorm0
grow linearly with g, the

number of generations. This implies that higher values of

nsel are more bene�cial if g is high. A similar argument can

be made for higher values of m, the population size.

4.3 Design Improvements

The above analyses and simulations of the HGA suggest de-

sign improvements could be made in the following ways.

� Increase parallelization of the selection modules as in-

dicated in Figure 2. This improvement is limited by the

eventual shifting of the bottleneck to the �tness module

and by the diminished bene�t of parallelization versus

area usage as described in Section 4.2.

� Use a memory con�guration which supports reads and

writes of population members in parallel. Coupled with

e�ective bu�ering, this could signi�cantly reduce delays

due to modules blocking each other. Additionally, an

ability to read from to one population while concur-

rently writing to another would eliminate the block-

ing that sometimes occurs between the population se-

quencer and the �tness module.

� Merge the population sequencer with the memory in-

terface module. Since the bottleneck in the PS is par-

tially due to the communication delay between the PS

and MIM, merging them would greatly reduce the de-

lay. For the equation evaluations of Section 4.2, the

new execution times would be approximately 35{40%

of those of the original design.

� Parallelize the selection-crossover-�tness pipelines as de-

scribed in Section 3.3. Like with selection module par-

allelization, this improvement would probably be lim-

ited by diminished bene�t of parallelization versus area

usage. More analysis is necessary to determine the op-

timal number of parallel pipelines.

� Mass parallelization as described in Section 3.3. This

would require more complex inter-module communica-

tion protocols than are presently in the design.

4.4 Prototype of the HGA System

The HGA system presented in Figure 1 was prototyped and

tested using three �tness functions. The HGA was designed

to operate in a coprocessor capacity, waiting for the CPU

to supply a \Go" signal to start HGA execution. For this

to be feasible, the HGA was implemented on a prototyping

board called the BORG board [6] which was connected to the

bus of a PC. This allowed the HGA and the CPU to share

memory, thus relieving the need for large amounts of I/O be-

tween the CPU and HGA. The BORG board consists of �ve

Xilinx FPGAs. Two XC4003s contain user-speci�ed logic,

two XC4002s provide user-speci�ed interconnect between the

XC4003s, and one XC4003 controls the interface to the PC's

bus. Also available on the BORG board are 8 kilobytes of

static RAM, an 8 MHz oscillator, and a \sea-of-holes" proto-

typing area. One of the two user-programmable XC4003s on

the BORG board houses the pseudorandom number genera-

tor and the crossover/mutation module. These two modules

share an XC4003 to reduce the number of inter-chip connec-

tions.

Since the FPGAs on the BORG board were too small

for the entire HGA design, additional FPGAs were inserted

into the BORG board's prototyping area and connected to

the BORG FPGAs. The BORG's prototyping area was used

to support the �tness, selection and memory interface mod-

ules which were too large for the FPGAs on the BORG board

(Figure 3). The population sequencer shared an FPGA with

the memory interface module. The prototyping area had

three XC4005s wire-wrapped to each other and to the chips

on the BORG board. If the desired �tness function is not

the default programmed in the �tness module (f(x) = x is

our default), the user can place other FPGAs in the proto-

typing area and connect them to the �tness module. These

extra FPGAs act as an external �tness evaluator which do

no bookkeeping like the �tness module does. Rather, they

are used to evaluate whatever member is presented to them

in a single clock cycle. This allows the implementation of

more complex �tness functions in the HGA.

Comparison with a Software-Based GA

We tested the HGA with the prototype and a VHDL simula-

tor against the software-based SGA [10] running on a Silicon

Graphics 4D/440 with four MIPS R3000 CPUs, each running

at 33 MHz. We chose the SGA for comparison because the

HGA was patterned after it. Thus the SGA is functionally

similar to the HGA.

The HGA was compared with the SGA when optimizing

the �tness functions f(x) = x, f(x) = 2x and f(x) = x+ 5.

The di�erent �tness functions were tested by changing the

default �tness function in the �tness module and reprogram-

ming the �tness module FPGA in the prototyping area. The

HGA and SGA both ran with population size m = 16, pop-

ulation member width n = 3 bits, and population member

�tness width fw = 4 bits for tests on the actual prototype.

For tests on the simulator, values of m = 32, n = 4 and

fw = 12 were used.

To make the comparisons as fair as possible, the SGA ex-

ecutable was optimized during compilation. Both the SGA

and HGA started with the same initial population, so the

only variations in the runs were from the pseudorandom

number generation. Finally, each di�erent �tness function

was optimized six times by both the SGA and the HGA.

Three optimization runs were for 10 generations and three

runs were for 20 generations. The results were then aver-

aged.

The results of the runs are in Table 4. In this table f(x)
is the �tness function used. The notations \2x (add)" and

\2x (mult)" refer to how the function f(x) = 2x was imple-

mented in the SGA. The \2x (add)" rows indicate that the

SGA implemented the function with x+x. The \2x (mult)"

rows indicate that the SGA implemented the function with

2 �x. In both cases, the HGA implemented the function with
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Figure 3: Simpli�ed schematic of the FPGAs in the BORG board's prototyping area.

Table 4: Performance of the SGA and the HGA.

Fitness No. of SGA HGA HGA

Function Gens. Clock Clock Speedup

f(x) g Cycles Cycles (Cycles)

x 10 97064 5636 17.222

x 20 168034 10622 15.819

x + 5 10 99825 5585 17.874

x + 5 20 170279 10945 15.558

2x (add) 10 101019 5390 18.742

2x (add) 20 170241 10659 15.972

2x (mult) 10 101555 5390 18.841

2x (mult) 20 170668 10659 16.012

x2 10 334210 22892 14.599

x2 20 574046 45019 12.751

2x3 � 45x2 + 300x 10 342806 22586 15.178

2x3 � 45x2 + 300x 20 589863 44503 13.254

x3 � 15x2 + 500 10 333701 21362 15.621

x3 � 15x2 + 500 20 579176 44317 13.069

a single left bit shift. The rest of the table presents the av-

erage execution times of the SGA and HGA in number of

clock cycles, giving a technology-independent performance

metric. The �rst eight HGA tests were run on the prototype

while the last six tests were run on a VHDL simulator. All

I/O times are removed from the comparisons. The HGA

prototype used an average 6.802% as many clock cycles as

the SGA. Our theoretical estimates indicate that total exe-

cution times of both the SGA and HGA grow quadratically

with m and linearly with g, which concurs with Table 4.

Thus the HGA's speed advantage over the SGA should re-

main constant independent of m and g. After implementing

the improvements described in Section 4.3, the design should

run even faster. For example, a design with the population

sequencer merged with the memory interface module could

easily cut the number of clock cycles in half. Parallelizing

the selection modules could further reduce the number of

clock cycles by 1=nsel. These changes alone could make the

HGA about two orders of magnitude faster than the SGA.

Additionally, increasing the complexity of the �tness func-

tion would increase the total execution time of the SGA. The

HGA, however, should run at the same rate because of its

ability to evaluate the �tness function in a single clock cycle.

A more complex �tness function would also require a large

population and a large number of generations. This would

make increased parallelization more cost-e�ective (Section 4.2)

since there is more room for improvement of the total exe-

cution time. Thus for complex problems, the HGA could be

three orders of magnitude faster than the SGA.

For the HGA to work on a more complex problem, it

would likely require (in the simplest case) the following pa-

rameters: m = 256, g = 104, n = 64 and fw = 2n or

3n. Based on our VHDL syntheses and mappings to Xilinx

FPGA technology, we predict that the HGA is feasible with

these parameters. Most of the HGA modules should be im-

plementable on Xilinx XC4006s or XC4008s [2] since much

of their logic is independent of the parameters (i.e. state

machine logic). The logic requirements of the modules FM,

CMM, RNG, MIM and PS would not be a�ected much by

the parameters. So the only limiting factor for these modules

would be pin counts that grow quickly with the parameters,

but this problem can be reduced through the use of a bus and

time multiplexing of the pins. Only a few kilobytes of RAM

would be required. The selection module as designed would

pose a problem because it uses an asynchronous multiplier

that occupies a number of CLBs growing with (fw+logm)2.

A larger HGA might require a synchronous multiplier that

is perhaps shared among several selection modules.1 Also,

since the external �tness evaluator is the only module abso-

lutely requiring reprogrammability, the remaining modules

could be implemented on a set of ASICs to save more space.

Thus the HGA would consist of a small RAM, a few ASICs

and some medium-sized FPGAs (the number dictated by

the �tness function's complexity) on a printed circuit board.

Also, using schematic capture rather than VHDL synthe-

sis would probably yield a more compact design. With a

good choice of schematic capture tool (e.g. Design Architect

from Mentor Graphics), design parameterization would still

be possible, so scalability would not be compromised.

5 Conclusion

Presented here was the HGA, a working implementation

of a hardware-based genetic algorithm. Due to the repro-

grammability of FPGAs, the HGA possessed the speed of

hardware while retaining the 
exibility of a software imple-

mentation, thus overcoming a major obstacle which previ-

ously prevented hardware-based GA implementations. The

result is a general-purpose GA engine which is useful in many

applications where software-based GA implementations are

too slow.

1The bottleneck existing in the PS coupled with the infre-
quency of the multiplication operationmakes this option feasible.



The HGA was designed with parameterized modules to

allow scalability, providing easy reimplementation as the

state of the art in FPGAs advances. Its functional cor-

rectness was veri�ed through simulation. Simulation was

also used to analyze the HGA's performance and identify

its bottleneck. The performance analyses revealed possible

improvements to the design. These improvements included

options of di�erent parallel and pipelined con�gurations.

This work combined the bene�ts of hardware with the

bene�ts of genetic algorithms. This work can be extended

in both areas as described below.

5.1 Hardware Extensions

The hardware side of this work can be extended in sev-

eral ways. First, the improvements suggested in Section 4.3

could be implemented and analyzed. These include paral-

lelization, concurrent memory access, and designing modules

which avoid some of the delay problems uncovered during the

analyses and simulations from Section 4.

The state of the art in FPGA technology will surely ad-

vance in the future. These improved FPGA technologies

could be exploited to improve the HGA's capabilities. For

example, the parameters of the design could be scaled up

so the HGA could handle larger strings, larger populations,

more complex �tness functions and more advanced GA op-

erators.

The current HGA design allows for the �tness module to

communicate with an external �tness evaluator that resides

on separate FPGAs and evaluates population members while

the FM performs the bookkeeping. Theoretically, the exter-

nal �tness evaluator can be as complex as desired. Thus

more complex �tness functions can be implemented which

may be distributed over multiple FPGAs.

For a greater speedup and a more compact implementa-

tion, the entire HGA except the external �tness evaluator

could be implemented on a fabricated chip since the other

modules do not require recon�guration. The external �tness

evaluator is the only module which requires reprogramma-

bility, thus it is the only module which truly needs an FPGA

implementation.

5.2 Genetic Algorithm Extensions

The genetic algorithm side of this work could be extended

by implementing other genetic algorithm operators and en-

codings [10]. Additionally, other selection methods could be

implemented and made available to the user as an HGA pa-

rameter via an improved user interface (software front end).
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