
Motivating Computational Grids
D.B. Skillicorn

Abstract—We examine plausible motivations for both using and build-
ing computational grids. We find two reasons to use such grids: the exis-
tence of a workload in which tasks have deadlines, but the load varies over
time; and the existence of an upper limit on cost-effective parallel systems,
forcing replication when greater degrees of parallelism are required. We
speculate that there may be scope for public grids, in which protecting the
integrity of information is not guaranteed, but that there is much larger
potential for virtual private grids within organizations. In both cases, the
form of markets, execution planning, and pricing is likely to be different
from the frictionless markets predicted in the literature.

I. INTRODUCTION

Grids are geographically distributed platforms for compu-
tation, accessible to their users via a single interface. They
provide computational power beyond the capacity of even the
largest parallel computer system, and merge extremely hetero-
geneous physical resources into a single virtual resource. While
there is considerable variation in what is meant by the term
‘grid’, the following properties represent the common denomi-
nator [5]:

� Grids are large both in terms of the number of poten-
tially available resources, and the geographical distances
between them.

� Grids are distributed, that is the latencies involved in mov-
ing data between resources are substantial and may domi-
nate applications.

� Grids are dynamic, that is the available resources change on
the same time scale as the lifespan of a typical application.

� Grids are heterogeneous, that is the form and properties of
sites differ in significant ways.

� Grids cross the boundaries of human organizations, so that
policies for access to and use of resources differ at different
sites.

It is obvious from these properties that providing a single ab-
straction for such complex ensembles is a substantial chal-
lenge. Furthermore, it is not enough to make large-scale high-
performance possible – it must also be effective if grids are to
be worth building and using. In other words, the achieved per-
formance (in its most general sense) of each application must
match the potential performance of the underlying resources it
used. Almost all grids therefore contain entities with the fol-
lowing functions:

� Execution Planning. Grids must be able to carry out re-
source discovery, to match available resources to those re-
quired by applications, and to move application compo-
nents, their data, and their results to and from the resources
they will use. Such decisions are of exponential complex-
ity and rely, of necessity, on stale load information, so it is
clear from the start that effective and stable heuristics must
be used.

� Access control. Traditional operating systems use a model
of security that is layered, like an onion. Resources used

Department of Computing and Information Science, Queen’s University,
Kingston, Canada. email: skill@cs.queensu.ca

by grid applications require a different pattern of access,
more like a slice of pizza, with complete access, but only
to a part of the total system. Grid applications ‘take over’ a
computer (for example by getting dedicated access to net-
work interfaces), but only for a time and without leaving
traces.

Most reports of grid research make perfunctory reference to the
purpose of grids before addressing whatever problem interests
their authors. Our contention is that the purposes for which
grids will be used need to be more carefully assessed in order
to decide which problems are actually important. There is some
risk that current research efforts will turn out to be misdirected.

In Section 2, we discuss the kinds of grids that have been pro-
posed in the literature, narrowing our focus to computational
grids. In Section 3, we consider what motivates users to use
computational grids. In Section 4, we consider what motivates
owners to make their resources available. In Section 5, we con-
sider the implications for grid research.

II. KINDS OF GRIDS

In the preceding section we discussed common properties of
grids. We now turn to considering differences in approach. Four
different kinds of grids have been proposed:

1. Computational grids: These represent the natural exten-
sion of large parallel and distributed systems, and exist to
provide high-performance computing. They assume a set
of available compute servers, and individual users who use
a single point of contact with the grid to execute single
computations that require more than one compute server.

2. Access grids: The emphasis here is on constructing a vir-
tual environment in which a number of users, potentially
from different organizations and perhaps only for a short
time, can interact as if they used a single dedicated hard-
ware platform. This requires managing access to many
specific, small resources that are actually located inside
large, complex, organizational computer systems and net-
works. Performance is typically much less of a priority
than it is for computational grids [6].

3. Data grids: These exist in order to allow large datasets to
be stored in repositories and moved about with the same
ease that small public files can be moved today. They rep-
resent an intersection of concerns from computational and
access grids, driven by the need to handle large datasets
without constant, repeated authentication. Data grids seem
at present to be largely motivated by the data handling
needs of next-generation particle accelerators (for exam-
ple, the EU Data Grid, the Particle Physics Data Grid and
the Globus Data Grid [1]).

4. Datacentric grids: These exist to make it possible to ac-
cess and compute with large, distributed repositories of
data that cannot, for one reason or another, be collected
in a single place. Unlike data grids, the assumption is that,
by and large, computations move to data rather than data

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

to computations [9]. Such grids are important for applica-
tions such as distributed data mining.

All four kinds of grids must address similar issues: resource
discovery, execution planning, authentication and security, and
heterogeneity of compute servers and data formats. They differ
in the emphasis that they give to each of these issues. In the
remainder of the paper, we will restrict our attention to compu-
tational grids.

A. Computational grids

The earliest grid concepts were motivated by sharing high-
performance equipment across geographical distances to solve
problems that exceeded the capacity of any single system. The
metaphor used for performance grids (and the origin of the
name) was the electrical power grid – users connect devices to
a wall socket without knowing or caring where the power was
generated or how it arrived at the wall socket [7]. In the same
way, it was argued, users want computing cycles and don’t care
about which computer executes them or how their programs and
data move between their desktop and that computer (or comput-
ers).

This metaphor of commodity computation cycles, while in-
teresting, turns out to be inappropriate – cycles are anything but
a commodity. Application users do not, on the whole, want their
applications (and data) to execute on an anonymous computer
somewhere because of concerns about information leakage, di-
rectly by revealing their code or data, or indirectly by revealing
their pattern of usage. Furthermore, applications may require
particular instruction sets, clock speed, data representations, or
balance between processor and memory cycle time in order to
achieve useful performance (or even to be able to run at all).
Thus the computer(s) on which any particular application may
execute are tightly constrained.

Nevertheless, there are many situations where the ability to
share resources without direct human intervention is useful, and
so there is a role for computational grids.

In the next two sections, we consider what might motivate
users of applications to execute them on a computational grid,
and what might motivate owners of computer systems to make
them available as infrastructure for a grid.

III. MOTIVATION TO USE COMPUTATIONAL GRIDS

In some sense, the motivation to use computational grids is
obvious – performance. However, this obvious point contains
some more subtle issues. We begin to address these by consid-
ering why users want to use parallelism at all.

A. The need for parallelism

It is well known that processor speed doubles every eighteen
months, and has done so for several decades. One solution to
performance problems, then, is simply to wait for the next gen-
eration of processor. After all, building a parallel version of an
application is quite a difficult task, and introduces significant
overheads.

Suppose we have a computation whose logical structure
(based on information flow, say) uses p parallel (perhaps in-
teracting) threads and takes time t to execute. A very general
result, known as Brent’s theorem [3], allows us to transform

this program so that it uses less parallelism and takes longer.
The new program uses p0 processors and takes time t �p=p0. The
total amount of work done (the product of processors and time)
remains constant.

There is no general transformation going in the other direc-
tion, that is changing a program so that it uses more processors,
and takes less time. Such transformations can be found, for
individual programs, but they usually require insight into the
structure of the program and the problem being solved. Further-
more, such transformations almost invariably increase the total
amount of work done by the program. In other words, exchang-
ing elapsed time for processors comes at the cost of increasing
the total resources spent.

These results make it clear that a parallel algorithm can al-
ways be effectively executed sequentially, but a sequential algo-
rithm can only with difficulty be executed in parallel.

Now consider the design of an application for which greater
performance is desired. The two facts above create significant
pressures on the design: first to simply wait for the next gen-
eration of processors, and second to use as little parallelism as
possible. It is almost always easier to design the program for
the simplest (most sequential) case, and wait a little longer for
its results when it is deployed than to design a parallel version
that will execute faster.

Are there any applications for which these strategies do not
work, and hence for which substantial parallelism is necessary?
Obviously, those applications whose deadlines are short enough
that execution on a sequential or small parallel platform will not
do. Some examples of classes of applications like this are:

� Web servers that need to respond to each of large set of
requests for service in a timely way. This is an easy class
of applications since the separate parallel actions interact
only sparsely, when they access the same data.

� Applications such as exploratory data analysis, where there
is a tight loop between a user’s train of thought and a se-
ries of computations. For example, an analyst may form
a hypothesis about a dataset, execute a computation to test
it, and refine or modify the hypothesis as a result. This
process may continue for many rounds. It is crucial to the
effectiveness of the process that the results of the compu-
tations are available at the natural speed of the analyst’s
thoughts.

� Applications that fit into larger human time scales. For
example, large building projects or engineering research
projects are often supported by computer applications that
must fit into the natural flow of activity on the project.
Weather forecasting is another example of this kind. Ar-
guably some computational science is in this class because
of the need to compute results in a timeframe that fits, ul-
timately, with the life span of the people involved.

There are significant applications that fall into these classes.
Notice, however, that they do not contain many of the applica-
tions traditionally categorized as ‘high performance’ which are
fundamentally curiosity-driven and do not, in fact, have tight
deadlines.

A second reason to use parallelism is that a parallel computer
has one major advantage over a uniprocessor with the same to-
tal instruction throughput – the parallel computer has a more

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

MOTIVATING COMPUTATIONAL GRIDS

memory close to its processors. A 10-Gigaflop uniprocessor,
with present memory technology, would not outperform 10 1-
Gigaflop processors in a parallel computer simply because the
uniprocessor would spend almost all of its time idling for mem-
ory. This limitation of leading-edge uniprocessors cannot be
avoided simply by rejigging its memory hierarchy for reasons
that are discussed below.

This improvement in access to memory does not come for
free – the application must be genuinely parallel in its logical
structure for this to help, and the overhead of designing the ap-
plication for parallelism must also be paid.

There are therefore two kinds of applications for which par-
allelism is useful: those with sufficiently tight deadlines, and
those with high memory-to-computation ratios.

Users with such applications, however, can use large parallel
computers as their computing platforms. Is there ever a reason
to use instead a collection of distributed, but smaller, parallel
computers?

B. The need to go beyond a single parallel system

From a purely technical point of view, there probably is lit-
tle need to go beyond a single parallel system to meet any
performance needs. This seems to be the view of the United
States Atomic Energy Commission, which continues to build
extremely large parallel computers for its larger applications.

We see that two kinds of organizations have no reason to con-
sider computational grids: those whose applications do not re-
quire any parallelism at all, and those whose need for paral-
lelism is entirely predictable, no matter how large that need is.
If an organization has a certain fixed need for parallel computa-
tion, it can do no better than to purchase an appropriate parallel
computer and dedicate the computer to its constant demand.

Organizations that should consider using computational grids
are those with applications that can use parallelism, but whose
load contains occasional peaks. It is then effective to dedicate
resources to the predictable part of this load, and use resources
from the grid to handle the peaks when they occur.

The kind of organizations with such a fluctuating load are
not those usually depicted in discussions of grids. For exam-
ple, most supercomputing centers have extremely high utiliza-
tion factors. To connect such centers as a grid resembles the
island on which the inhabitants all made a living doing each
other’s laundry.

If we look for situations in which demand fluctuates, we
are drawn to the commercial world, where an organization’s
computing requirements are often determined by the minute-to-
minute choices of its customers. High-performance commer-
cial applications are likely to be an important, but currently ne-
glected, application domain for computational grids.

IV. MOTIVATION TO PROVIDE COMPUTATIONAL GRIDS

We now consider what might motivate an organization to pro-
vide computational resources in the form of, or as a contribution
to, a grid.

A. Cheaper than monolithic systems

An effective computer must balance the rate at which data
and instructions can be fetched from memory with the rate at

which they can be consumed by processors. In this section, we
argue that, at any given time, this balance determines the opti-
mal size of a cost-effective parallel computer. Larger systems
are possible, but their cost per cycle increases rapidly as they
go above the optimal size. Therefore, if greater performance
or parallelism is required than a single, optimally sized parallel
computer can provide, the best solution is to connect multiple
parallel computers rather than build a single larger parallel com-
puter.

A.1 The argument from storage

Consider a storage system with n storage cells. How long
does it take to access a sequence of random cells? The conven-
tional computing science answer is that the latency is
(logn)
because each cell is the leaf of a binary tree of access paths.
This clearly cannot be exactly right because the access paths
must exist in 3-dimensional space. From this we can argue that
the latency is in fact
(n1=3) – the cells may be packed into a
sphere whose volume grows as the cube of its radius [11].

These latencies are those required for a single access to a
random location. In practice, many accesses might be orga-
nized in a streaming (or pipelined) fashion which might reduce
this latency on average. The analysis required to understand
what happens in this situation has been done by biologists try-
ing to understand scaling laws in living creatures (which have
the similar problem of delivering blood to all parts of their bod-
ies) [2, 12]. The latency in this setting is
(n1=4) – the effect of
pipelining is to act as an extra dimension.

If the effective interval between processor fetches from mem-
ory is t then the effective memory hierarchy latency should
match, that is t � n1=4, imposing an upper limit on n. A
parallel computer with p processors requires data p times as
quickly, but can satisfy these requests from p different mem-
ory hierarchies, so the fundamental relationship does not change
(although a shared-memory parallel computer has some extra
constraints which may have the effect of limiting p).

The argument is not affected by issues such as spatial and
temporal locality since these only alter the effective demand rate
for data from memory. Clever programming to reduce memory
traffic can decrease the rate at which memory is required to re-
spond (increasing t), allowingn to be a little larger than it would
naively be.

If more data needs to be stored than can fit into the ‘standard’
storage system, then the only solution is to replicate storage
systems and access them concurrently. This replication must
be real, in the sense that it requires independent patterns of ac-
cess to each system. We can understand the performance im-
provement that results from replicating storage systems as ‘ge-
ographic locality’.

There is little point in building processors (or parallel sys-
tems) whose memory bandwidth and latency demands are sig-
nificantly greater than the delivery properties of storage sys-
tems. Such systems underuse their processors. Arguably, we
have already passed this point – many modern processors are
idle more than half the time.

Even within a single organization there is therefore a pres-
sure to build replicated parallel systems rather than larger and
larger monolithic parallel systems. Once this has been done, the

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

advantages of using grid technology to create a single resource
from these separate systems are obvious.

This argument shows that, within a single organization, the
existence of a largest natural (that is cost-effective) size for a
computer system suggests that replication will occur naturally.
We now consider grids in which the component computer sys-
tems belong to different owners and organizations. What would
motivate them to make their systems available to ‘outside’ use?

B. Free grids

Free grids exist because some computer owners donate the
unused cycles, and possibly also storage space, of their com-
puters to be used by others. The motivation to do so is a sense
of public spiritedness or a desire to participate in the success of
the computation that will use their systems. Examples include
SETI@home, which uses PCs to process astronomical data in
search of intelligent life, and a number of health and drug de-
sign projects.

It is hard to predict the future size of this segment of the com-
putational grid world with confidence. It is certainly true that
there are many computers in the world whose cycles go largely
unused. On the face of it, harnessing these cycles seems sen-
sible – but there are complications. Some of these are techni-
cal, for example finding and paying for the bandwidth to such
computers. Others center around issues of trust, in both direc-
tions. On the one hand, computer owners must be certain that
the code they are executing cannot damage their system and is
not covertly acquiring information about it, or about their usage
of it. This alone probably restricts the approach to genuinely
personal computers rather than institutional ones. On the other
hand, the application user has to be certain that the computers
used are actually carrying out the desired computation, rather
than simply generating spurious, but plausible results (‘I fear
geeks bearing gifts’). This has led to the practice of repeating
computations on different computers and comparing the results,
which at least doubles the total computation required. Funda-
mentally better solutions seem inherently unlikely – if the com-
putations are at the leading edge of what is possible then, al-
most by definition, the bounds on plausible results must be quite
weak and hence almost useless as a check on honest calcula-
tions.

Free grids, and other peer-to-peer computational models, will
presumably play an ongoing role in large-scale distributed com-
putation, but probably never a dominant one.

C. Public grids

Public grids are closest in spirit to the original idea of grids
as providers of commodity cycles. The assumption here is that
the results of computations that use public grids are not confi-
dential, so that issues of security center around authentication
and appropriate use rather than around the computations and
data themselves. In other words, security aims to protect the
providers of cycles from misuse, rather than protecting the users
of cycles from information leaks. Note that a public grid is not
one that is freely accessible, in the sense of being open to the
public. A public grid may have its own policies about who can
access the resources it encompasses and how these resources
must be paid for.

There are some who believe that public grids can be made
secure enough that they really can become providers of com-
modity cycles to organizations that must keep data and compu-
tations secure. It is hard to believe, however, that organizations
with data that is enterprise-critical will be comfortable sending
it out into a grid without knowing where it will be used, no
matter what level of security and encryption the grid provides.
Technical solutions to issues of security do exist and are active
topics for research, but it does not seem likely that the level of
risk could ever be reduced to the level that would tempt most or-
ganizations to use public grids. Even if it could be, there remain
applications where traffic analysis of programs and data might
provide significant information about an organization’s internal
functioning. Of course, there are organizations that use other’s
hardware and software for computations that are enterprise-
critical. Readers of the Risks Digest (catless.ncl.ac.uk/Risks/)
or indeed of technical media coverage might consider such ac-
tions foolhardy. Hence it seems likely that most computations
on public grids will be those where leakage of information is
not a critical drawback.

In this context, what motivates owners of compute cycles to
make them available on a public grid? At present, it is usually
because the computing facilities have been provided by research
agencies and governments for scientific research, and sites wish
to trade peaks in their usage with other sites whose peaks occur
at different times. It remains an open question how often this
occurs in practice, other than in small demonstration contexts,
since most high-performance computing facilities are already
fully utilized. However, the potential exists, and there is also
an opportunity for commercial compute-cycle service providers
to join public grids, making extra cycles available (for example,
IBM seems to be moving in this direction with their support for
the Distributed Petascale Facility; see also their news release of
August 2, 2001).

In a public grid, therefore, there are both providers of com-
pute cycles and consumers of compute cycles. At present, these
are usually the same people, suggesting that barter is a sensible
way to structure the market used to price and pay for resources.
However, if service providers join the grid to provide cycles,
and other users join the grid as net cycle consumers, then a more
sophisticated market will be required. A mechanism is needed
to determine what resources are available at any moment, and
how they should be priced.

The most common assumption in the research literature today
is that the market in public grids is [4]:

� A spot market, so that prices are determined on short time
frames; and

� An example of a truly frictionless market because marginal
costs are low, and pricing is transparent.

It is therefore assumed that the best way to implement the mar-
ket for resources in public grids is by having each application in-
teract with an execution planner, which has access to the prices
offered by each resource provider at the moment when it be-
comes ready to execute. These prices are assumed to vary fre-
quently, with a centralized market clearing procedure or auction
used to make the actual allocation decisions (e.g. [13]).

In fact, there is little reason to suppose that public grids will
be frictionless markets just because it is technically feasible for

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

MOTIVATING COMPUTATIONAL GRIDS

them to be [8, 10]. In such a market, it is in the interest of re-
source providers to create artificial barriers. This increases the
amount of money they can make (the surplus extraction), but
can also increase the benefits to all users (the social welfare).
There are several known mechanisms for doing this:

� Bundling, the practice of selling resources or services in
groups, rather than, or as well as, individually. In a grid,
this might mean that the owner of a compute server might
offer cycles and storage capacity at a single price.

� Price discrimination, the practice of selling resources at
different prices to different users (even when the resources
are essentially the same).

� Subscription services, the pre-purchase of the use of cer-
tain resources to be used at regular times or in regular
quantities. This is particularly attractive to users because
it has the same properties as buying dedicated systems
(fixed one-time cost but no incremental cost per cycle) and
because guarantees are exactly what is wanted when the
problem is to handle a load peak.

It is not yet clear how great a role public grids will play in
large scale computation. However, we have argued that the way
in which execution planning and pricing will be done will be
quite different from the models portrayed most commonly in
the literature – much less dynamic, and much less idealized.

D. Virtual private grids

Virtual private grids allow resources to be shared in the same
way as in a public grid, with the major difference that all of
the resources belong to a single organization. There is signif-
icant potential for peak demand clipping within organizations
that straddle multiple time zones – when resources are heavily
used in one zone, resources in another zone may be lightly used.
For example, a web server in a time zone where it is evening will
typically be busy, while another in a time zone where it is morn-
ing may be less busy. Offloading traffic from the busy server to
the other may improve response times for everyone.

Of course, web traffic is particularly easy to redirect; when
the load comes from computations, many of the same technolo-
gies used in public grids are relevant. However, there are two
major differences:

� There is a level of trust because of the common owner-
ship of the resource servers, making it plausible to allow
enterprise-critical computations to be moved around the
virtual private grid.

� The market involved in matching resource demands and
their servicing can be closer to a barter system. The goal
is to achieve optimal global use of resources, and can be
addressed directly (whereas in a public grid, optimal use
of resources is less critical than stability, and both are re-
garded as emergent properties of appropriately moderated,
local, greedy decisions).

V. IMPLICATIONS FOR RESEARCH

In this section, we discuss the implications of the previous
discussion of technical issues. Some of these may be con-
tentious. However, it is helpful to stimulate discussion before
research is done which may turn out not to be useful.

A. Grid Users

In our view, grid usage is likely to be concentrated in the
following areas:

� Computational science. This is, of course, the area where
most current grid applications are to be found. Compu-
tational science users have three possible motivations for
using grids:

1. The need for high degrees of parallelism. Note that, from
the previous discussion, this need must be occasional if
a grid is to be the right solution. There are doubtless
some applications of this kind, but their number seems
relatively small.

2. The need for large storage. Since the natural size of a
storage node is constrained by technology, a grid is the
natural way to have larger storage managed as a single
entity. Note that, if this solution is to work, applications
that use the storage must be able to be parallelized.

3. The need for a pool of compute servers. Just as a sin-
gle compute server can function as a pool of processors
available to applications with varying parallel require-
ments, a grid can act as a pool from which users select a
single compute server in a consistent way.

� Other public grid applications. It is not yet clear what these
are, nor how large a set they might be. Some simple exam-
ples are: searches at search engines, where a query can
generate significant load for which, at present, the user is
not charged; and servlets, which also execute computations
at a server on behalf of a user.
There do not seem to be many other applications for which
the lack of security and trust in public grids are not major
impediments. It is conceivable that shared spaces for gam-
ing will become so complex that they will be able to use
grids as platforms.

� Virtual private grids. Many organizations are large enough
to cross time zones, generating varying load in a natural
way. The ability to migrate this load allows such organi-
zations to invest in less hardware than they would require
to handle the maximum load at all of their sites, providing
direct cost savings.

Potential applications of the grid determine which research
problems are of interest. The applications most often discussed,
computational science, have some relevance. The potential ap-
plication pool for virtual private grids, however, seems larger
and more important in the long run.

B. Grid properties

The preceding discussion suggests that, while resource dis-
covery and access control are well understood issues in design-
ing effective grids, both execution planning and pricing may
have been misunderstood. The general assumption has been that
decisions about how to map an application to a set of resources
will be made under tight deadlines, with pricing determined be-
tween the time of submission and the time that execution be-
gins. We suggest that these assumptions will probably not hold
– both execution planning and pricing are likely to be done in
more structured ways, and based on longer-term agreements.

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

B.1 Execution planning.

We have argued that a fundamental purpose of grids is to han-
dle peaks in demand. It is likely that such peaks are at least
partially predictable. For example, there is a strong time of
day component to many computing applications; and even when
there is not, growth in demand is more likely to be steady than
to jump suddenly. Predictable rises in demand allow resources
to be allocated before they are needed.

It is also true that very few applications are run only once.
Therefore there is an opportunity to learn from the behavior of
previous executions of the same (or similar) applications when
constructing an execution plan for the current application. In-
cremental improvement seems far more likely than ab initio ex-
ecution planning scenarios.

In fact, executing applications on grids generates a vast
amount of metadata about the execution process. For pragmatic
reasons, much of this data will probably remain on the sites
where it was generated. However, this information is almost
certainly of use in execution planning for other applications;
in other words, the information it contains generalizes beyond
specific applications. Together, these two facts suggest that dis-
tributed data mining is likely to be a fundamental part of grid
infrastructure (as well as a major grid application).

B.2 Pricing.

We have argued that barter is likely to be the major form of
pricing in grids, although it will be convenient to use currency
to simplify the process of exchanging value. However, differ-
ent issues arise in different kinds of grids. In public grids, the
major issue is fairness. Users and owners are, by and large,
the same people and want to ensure that the external resources
they use to handle their peaks in demand are equivalent to their
own resources used by others. This raises questions of the rela-
tive values of different resources: for example, the discussion of
parallelism makes it clear that a program that requires many pro-
cessors should be charged more than one requiring fewer pro-
cessors, even if they execute the same number of instructions in
total, because it is more expensive to provide parallelism than
time. However, these issues of relative values can be solved on
a long time scale: at the beginning, if grid resources are fixed.

On the other hand, in virtual private grids the major issue is
making effective use of the total set of resources. It does not
matter if each local resource ‘owner’ exactly balances use and
supply of resources. Pricing issues, which are still relevant as
a way to prioritize usage, are based on a different dynamic. It
may still be appropriate to use currency. In an artificial money
economy, a ‘rich’ user can claim resources ahead of a ‘poor’
one, so currency acts as a surrogate for priority.

If grids embodying a true market do develop, it seems clear
that prices will not be determined in a spot market. Rather,
prices will be agreed in advance (in much the same way as in
a barter pricing model). If the rate of entry to and exit from
the grid is fairly rapid, prices may fluctuate based on supply,
but it still seems unlikely that this will be a minute to minute
phenomenon. Technologies for clearing markets such as auc-
tions which have been previously discounted as too slow may
actually turn out to be useful.

It also seems clear that any market that develops will contain
artificial barriers (bundling, differential pricing, subscriptions).
Such markets have been studied in the real world. The prin-
cipal difference is that grid markets will be more transparent
than any real world market, because of the ease of capturing
and analysing data about available resources, load, and pricing.

It also seems likely that arbitrageurs will play a role in
smoothing out supply and demand over time. For example, re-
sources such as computing cycles that are consumable may be
priced high in the immediate future, but lower if reserved far in
advance. In this setting, arbitrageurs may buy resources in ad-
vance and sell them at a profit closer to the time by which they
must be used, as travel companies do with airline seats.

We have argued that, although there are multiple, important
roles for computational grids, these do not much resemble the
kinds of grids envisaged in much published work. This seems to
be largely because researchers have begun to solve interesting
problems without considering sufficiently whether such prob-
lems are likely to occur.

REFERENCES

[1] W. Allcock, A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and
S. Tuecke. The data grid: Towards an architecture for the distributed
management and analysis of large scientific datasets. Journal of Network
and Computer Applications, 23:187–200, 2001.

[2] J.R. Banavar, A. Maritan, and A. Rinaldo. Size and form in efficient trans-
portation networks. Nature, 399:130–132, 13 May 1999.

[3] R.P. Brent. The parallel evaluation of general arithmetic expressions.
Journal of the ACM, 21, No.2:201–206, April 1974.

[4] R. Buyya, D. Abramson, and J. Giddy. A case for economy grid archi-
tecture for service-oriented grid computing. In 10th IEEE International
Heterogeneous Computing Workshop (HCW 2001), In conjunction with
IPDPS 2001, San Francisco, California, April 2001.

[5] I. Foster and C. Kesselman (eds.). The Grid: Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann, San Francisco, 1999.

[6] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling
scalable virtual organizations. International Journal of Supercomputer
Applications, 2001.

[7] W. Johnson, D. Gannon, and B. Nitzberg. Grids as production comput-
ing environments: The engineering aspects of NASA’s information power
grid. In Eighth IEEE International Symposium on High Performance Dis-
tributed Computing. IEEE, August 1999.

[8] A. Odlyzko. The bumpy road of electronic commerce. In H. Maurer,
editor, WebNet 96, pages 378–389. AACE, 1996.

[9] D.B. Skillicorn. The case for datacentric grids. In Workshop on Massively
Parallel Programming, IPDPS2002, to appear.

[10] H.R. Varian. Economics of information technology. Mattioli Lec-
ture, Bocconi University, Milan, Italy, November 2001. Available from
www.sims.berkeley.edu/�hal/people/hal/papers.html.

[11] P.M.B. Vitányi. Locality, communication and interconnect length in mul-
ticomputers. SIAM Journal of Computing, 17(4):659–672, August 1988.

[12] G.B. West, J.H. Brown, and B.J. Enquist. The fourth dimension of life:
Fractal geometry and allometric scaling of organisms. Science, 284:1677–
1679, 4 June 1999.

[13] R. Wolski, J.S. Plank, J. Brevik, and T. Bryan. G-commerce: Market
formulations controlling resource allocation on the computational grid. In
International Parallel and Distributed Processing Symposium (IPDPS),
April 2001.

Proceedings of the 2nd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�02)
0-7695-1582-7/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

