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ABSTRACT

The paper presents the comparative analysis of two most 

important neural networks: the multilayer perceptron 

(MLP) and Support Vector Machine (SVM). The most 

effective learning algorithms have been implemented in an 

uniform way using Matlab platform and undergone the 

comparison with respect to the complexity of the structure 

as well as the accuracy and the calculation time for the 

solution of different learning tasks, including classification, 

prediction and regression. The results of numerical 

experiments are given and discussed in the paper. 

1. INTRODUCTION

An artificial neural network (ANN) is an abstract 

computational model of the human brain. Similar to the 

brain ANN is composed of artificial neurons, regarded as 

the processing units, and the massive interconnection 

among them. It has the unique ability to learn from the 

examples and to generalize, i.e., to produce the 

reasonable outputs for new inputs not encountered during 

a learning process. The distinct features of ANN are as 

following: learning from examples, generalization ability, 

non-linearity of processing units, adaptativity, massive 

parallel interconnection among processing units and fault 

tolerance. 

The neural networks may be regarded as the universal 

approximators of the measured data in the 

multidimensional space. They realize two types of 

approximation: the global and local one. The most 

important example of global network is the multilayer 

perceptron (MLP), employing the sigmoidal activation 

function of neurons. In MLP the neurons are arranged in 

layers, counting from the input layer (the set of input 

nodes), through the hidden layers, up to the output layer. 

The interconnections are allowed only between two 

neighbouring layers. The network is feedforward, i.e., the 

processing signals propagate from input to the output side.  

The most representative example of local neural network 

is the Support Vector Machine (SVM), of the Gaussian 

kernel function. It is a two layer neural network 

employing hidden layer of radial units and one output 

neuron. The procedure of creating this network and 

learning its parameters is organized in the way in which 

we deal only with kernel functions instead of direct 

processing of hidden unit signals. 

This paper will summarize and compare these two 

networks: MLP and SVM. The comparison will be done 

with respect to the complexity of the structure as well as 

the accuracy of results for the solution of different 

learning tasks, including classification, prediction and 

regression problem. Special emphasis will be given to the 

generalization ability of the learned structures acquired in 

different learning processes. 

2. GRADIENT LEARNING ALGORITHMS OF 

MLP

The learning process of MLP network is based on the 

data samples, composed of the N-dimensional input 

vector x and the M-dimensional desired output vector d,

called destination. By processing the input vector x the 

MLP produces the output signal vector y(x,w), where w

is the vector of adapted weights. The error signal 

produced actuates a control mechanism of the learning 

algorithm. The corrective adjustments are designed to 

make the output signal yk (k=1, 2,…, M) to the desired 

response dk in a step by step manner. 

The learning algorithm of MLP is based on the 

minimization of the error function defined on the learning 

set (xi,di) for i=1,2,…,p using an Euclidean norm  
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The minimization of this error leads to the optimal values 

of weights. The most effective methods of minimization 

are the gradient algorithms, from which the most effective 

is the Levenberg Marquard algorithm for medium size 

networks and conjugate gradient for large size networks. 

Generally in all gradient algorithms the adaptation of 

weights is performed step by step according to the 

following scheme 

)((k)1)(k kpww (2)

In this relation p(k) is the direction of minimization in kth 

step and  is the adaptation coefficient.  Various learning 

methods differ in the way the value od p(k) is generated.
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In Levenberg-Marquardt approach the least square 

formulation of learning problem is exploited 
M

i
ii dywE

1

2
)(5.0)( w  and solved by using second 

order method of Newton type 
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g  is the gradient of error function (1) 

and G(k) – the approximated Hessian, determined by 

applying the Jacobian matrix J(k)
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In this equation the Jacobian matrix J is equal 
w

e
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and
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MM dydy )(,...,)( 11 wwe . The variable v is 

the Levenberg-Marquard  parameter adjusted step by step 

in a way to provide the positive definiteness of Hessian G

(the value of v is eventually reduced to zero). 

In conjugate gradient approach, most effective for large 

networks, the direction p is evaluated according to the 

formula 

)1()()( kkk pgp (5)

where the conjugate coefficient  is usually determined 

according to the Polak-Ribiere rule 
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In the weight update equation (2) the learning coefficient 

 should be adjusted by the user. It is done usually by 

applying so called adaptive way [7], taking into account 

the actual progress of minimization of the error function. 

3. SUPPORT VECTOR MACHINE NETWORK 

Support Vector Machine (SVM) is a linear machine 

working in the highly dimensional feature space formed 

by the nonlinear mapping of the N-dimensional input 

vector x into a K-dimensional feature space (K>N) 

through the use of a mapping )(x . The way in which 

SVM network is created differs for the classification and 

regression tasks [5,6], although both transform the 

learning task to the quadratic problem. 

3.1 Classification mode 

In the classification mode the equation of the hyperplane 

separating two different classes is given by the relation 
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K )(),...,(),()( 10 xxxx  is composed of activation 

functions of hidden units with 1)(0 x  and 

T
Kwww ,...,, 10w  is the weight vector of the network.  

The most distinctive fact about SVM is that the learning 

task is reduced to quadratic programming by introducing 

the so-called Lagrange multipliers i . All operations in 

learning and testing modes are done in SVM using kernel 

functions satisfying Mercer conditions [5]. The kernel is 

defined as )()(),( xxxx i

T

iK . The well known 

kernels include radial Gaussian, polynomial, spline or 

linear function. 

The final problem of learning SVM, formulated as the 

task of separating learning vectors xi into two classes of 

the destination values either di=1 or di=-1, with maximal 

separation margin, is reduced to the dual maximization 

problem of the quadratic function [5,6] 
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with the constraints Cd i

p

i
ii 0,0

1

, where C is a 

user-defined constant and p is the number of learning data 

pairs (xi, di). C represents the regularizing parameter and 

determines the balance between the complexity of the 

network, characterized by the weight vector w and the 

error of classification of data. For the normalized input 

signals the value of C is usually much higher than 1 and 

adjusted by cross validation. 

The solution of (7) with respect to the Lagrange multipliers 

produces the optimal weight vector wopt, as 
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xw . In this equation Ns means the 

number of support vectors, i.e. the learning vectors xi, for 

which the relations i

K
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the nonnegative slack variables of the smallest possible 

values) are fulfilled with the equality sign [5,6]. The output 

signal y(x) of the SVM network in the retrieval mode (after 

learning) is determined as the function of kernels 
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and the explicit form of the nonlinear function )(x  need 

not be known. The value of y(x) greater than 0 is 

associated with 1 (membership of the particular class) and 

the negative one with –1 (membership of the opposite 

class). Although SVM separates the data only into two 

classes, the recognition of more classes is straightforward 

by applying either “one against one” or “one against all” 

methods [9]. 

3.2 Regression mode 

The learning task in this mode is transformed to the 

minimization of the error function, defined through the -

insensitive loss functions L (d,y(x))  [5,6] 
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where  is the assumed accuracy. The learning problem is 

defined as the minimization of the error function 
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E x  at the upper bound on the weight 

vector w. Introducing the slack variables i  and '

i   the 

learning problem can be redefined to the form similar to 

the classification mode, i.e., the minimization of the cost 

function 
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at the functional constraints ii

T

id )(xw  and 

')( iii
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i . The 

constant C in equation (10) is a user specified parameter. 

The variables:  and C are free parameters that control the 

VC dimension of the approximating function [5,6]. Both 

must be selected by the user.  

The solution of so defined constrained optimization 

problem is solved in practice by introducing the Lagrange 

multipliers i , 'i  responsible for the functional 

constraints, and by solving the appropriate quadratic 

programming task [5,6]. Once again the solution of the 

problem depends only on the kernel functions defined 

identically as in the classification mode. After solving the 

quadratic learning problem the optimal values of 

Lagrange multipliers are obtained. Denoting them by oi

and oi'  SVM network output signal y(x) is expressed as 
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The important advantage of SVM approach is the 

transformation of the learning task to the quadratic 

programming problem. For this type of optimization there 

exist many highly effective learning algorithms [6,8], 

leading in almost all cases to the global minimum of the 

cost function and to the best possible choice of the 

parameters of the neural network.The presented above 

learning algorithms related to MLP and SVM have been 

implemented using Matlab platform [7] and tested on three 

tasks of the classification, prediction and regression type. 

4. THE RESULTS OF NUMERICAL 

EXPERIMENTS 

4.1 Two-spiral classification problem  

Two spiral problem belongs to the most demanding 

classification tasks [3]. The classification points 

distributed along two interlocking spirals go around the 

origin and belong to two classes (Fig. 1). The difficulty of 

this problem is due to the fact that small difference in x-y 

placement of the point may result in completely different 

class membership, since both classes are very close to 

each other. The problem is a serious challenge to all 

learning algorithms [2,3]. We have solved the problem 

using both: MLP network trained by using Levenberg-

Marquardt algorithm and SVM with radial basis function 

trained by applying Platt method [8]. The training time of 

MLP was approximately 10 times longer than SVM. 

Fig. 1. The 2-spiral problem training point distribution 

 Both networks have classified the data correctly. The 

results of testing the trained networks on the 2-spiral data 

scanned over x-y reception field are presented in Fig. 2.

a) b)

Fig. 2. The output pattern of the reception field as the 

input is scanned over x-y space: a) MLP, b) SVM 

The figures show the output of an optimal 25 hidden-unit 

MLP network (left) and SVM of radial kernel (right) 

employing 86 support vectors, as the input is scanned 

over the entire x-y field. Both networks properly 

classified all 200 training and all testing points. It can be 

seen that the reception field is interpolated fairly 

smoothly almost everywhere in the data field. More 

smooth reception field obtained for the SVM means, that 

the SVM solution is of better quality with respect to 

generalization. Moreover the training time of MLP was 

almost 10 times longer. 

4.2 Time series prediction problem 

The next experiment is concerned on the prediction 

problem of the Mackey-Glass time series in chaotic mode, 

generated using the following differential equation [4] 
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with the parameters 21 , r=0.2, b=0.1 and initial 

conditions 5.0)(ty  for t0 , and step size 

equal 2s. To predict the signal value yi, the MLP and 

SVM input vector xi was equal 
T

Miiii yyy ,...,, 11x .

In our experiments we have chosen M=2 and 1200 data 

samples generated according to the equation (12). The 

samples of points (1-600) have been used as the training 

set and the other samples (601-1200) as the testing set. 

The accuracy of prediction, as well as the complexity of 

the best trained MLP network and the best SVM network 

of radial kernel functions, have been compared in the 

testing range 601-1200 and set in Table 1. The values in 
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the Table are the averages of 10 different runs of the 

learning algorithms. 

Table 1. The summary of results for time series 

prediction problem 

Network
No of hidden 

units

Mean relative 

error
Max error 

MLP 14 1.38% 5.94% 

SVM 357 1.40% 4.83% 

The prediction errors have been calculated only for 

testing data, not taking part in learning process. They 

reflect the generalization ability of both networks. As it is 

seen both networks behave well, although the MLP 

network seems to be a bit better with respect to the mean 

relative error (1.38% instead of 1.40%). However SVM is 

better with respect to the maximum relative errors (4.83% 

compared to 5.94%). On the other side it should be 

observed that the complexity of MLP is much lower than 

SVM (14 units instead of 357). 

4.3 The artificial nose regression problem 

The last comparison of the networks will be done on the 

real life problem: the calibration of the artificial nose [2]. 

The so called artificial nose is composed of an array of 

semiconductor sensors generating the signals proportional 

to the resistance dependent on the presence of particular 

gas. The normalized sensor signals are processed in the 

calibrating network, usually of the neural type. The role 

of neural calibrator is to calculate the gas concentration 

on the basis of the normalized sensor signals. In this 

application we have checked the MLP network and SVM 

of radial kernel function as the calibrators. In our 

experiments we have considered 4 toxic gases: carbon 

oxide, methane, propane/buthane and methanol vapour. 

As the sensors a small array of five semiconductor oxide 

sensing elements with various compositions has been 

used (TGS-815, TGS-822, TGS-842 Figaro sensors and 

NAP-11A, NAP-11AE Nemoto sensors). This array of 

sensors was exposed to various mixtures of air with these 

four pollutants of different concentarations.  

The training data set consisting of 5 measured sensor 

signals of 340 known gas mixtures was used as the input 

for the network. A set of 80 further cases was used only 

for testing. Different concentrations (random distribution) 

of gases have been used in experiments, changing from 0 

to 1500ppm. In the experiments all of them have been 

normalized to the range (0, 1) simply by dividing all 

numbers by the maximum value of concentration. 

The number of input nodes of both networks was the 

same and equal to the number of sensors (5). MLP 

network used 4 output neurons, each responsible for the 

concentration of individual gas. SVM employs only one 

output unit, so 4 different networks should be trained, 

each responsible for one particular gas. The number of 

hidden units (K) for all trained networks are given in 

Table 1. It presents also the average absolute errors (mean 

and maximum values) of estimation of concentration of 

four gases used in experiments by applying MLP network 

and SVM of radial kernel. They are the mean of 10 

different runs of learning algorithm. 

Table 2. The summary of average absolute errors of 4 

gases estimation 
MLP SVM Network 

K Mean 
410

Max 
410

K Mean 
410

Max 
410

Gas 1 15 3.43 10.50 332 12.42 68.03 

Gas 2 15 2.73 6.51 309 8.89 56.13 

Gas 3 15 1.25 5.23 211 8.48 43.21 

Gas 4 15 0.87 3.18 159 4.49 28.01 

Average 15 2.07 10.50 253 8.57 68.03 

As it is seen the MLP network was much better in this 

regression task. At much lower complexity (15 hidden 

sigmoidal neurons compared to 253 radial units) the 

obtained errors, both mean and maximum, are evidently 

smaller smaller. Moreover it should be noted that SVM 

solution needed training 4 different one-output networks, 

while MLP structure of 4 output neurons was only one, 

common for all four gases. 

5. CONCLUSIONS

The numerical experiments performed for both: MLP and 

SVM networks have confirmed that both solutions are 

very well suited for classification, regression and 

prediction tasks. In classification mode the unbeatable is 

SVM, while in regression better generalization ability 

possesses MLP. The observed differences in performance 

are in most cases negligible. However the main difference 

is in the complexity of the networks. The MLP network 

implementing the global approximation strategy usually 

employs very small number of hidden neurons. On the 

other side the SVM is based on the local approximation 

strategy and uses large number of hidden units. The great 

advantage of SVM approach is the formulation of its 

learning problem, leading to the quadratic optimization 

task. It greatly reduces the number of operations in the 

learning mode. It is well seen for large data sets, where 

SVM algorithm is usually much quicker. 
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