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ABSTRACT

In this study, pattern classification methods for automatic
segmentation of PET brain receptor density images are
compared. Because of low contrast to noise ratio we
utilize information about dynamics of tracer uptake
present in PET studies. We compare three methods:
expectation-maximization algorithm (EM), fuzzy C-means
algorithm (FCM) and independent component analysis
(ICA). Particularly, our interest was in segmentation
of the striatum and cerebellum structures. The methods
were applied to a Monte Carlo simulated phantom
image and to five different human PET studies. We were
able to extract striatum with the EM algorithm and
ICA satisfactorily from all PET studies. With the FCM
algorithm striatum could not be differentiated to its own
class. The cerebellum was found only with ICA from
the simulated image. ICA seemed to be less sensitive to
noise of all the studied methods. The EM algorithm was
most sensitive to patient movement in the human PET
studies. The EM algorithm and ICA seemed promising for
the segmentation task when taking low contrast to noise
ratios of the PET images into account.

I. INTRODUCTION

The aim of this work is comparison of automatic methods
for segmentation of positron emission tomography (PET)
data by exploiting all information of a PET study. The
three-dimensional (3-D) PET brain images considered
in this study represent receptor density of the brain. A
dynamic PET study contains information about dynamics
of tracer uptake related to brain structures, i.e. a dynamic
PET study is a sequence of 3-D images acquired during
subsequent time intervals. For a human viewer, segmenta-
tion of dynamic images is impossible because it demands
ability to examine 4-D data (three dimensions and time)
with noise and low contrast. Therefore, image segmen-
tation requires automated methods. Individual differences
in the tracer uptake and a low contrast to noise ratio
typical to PET images are significant challenges for the
segmentation. However, time dependent information about
tracer uptake present in dynamic PET studies can be used
to improve the segmentation of the PET images.

There are some studies addressing automatic
segmentation of dynamic PET brain images with
basic pattern classification methods. For example in [2]
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Fig. 1: Examples of transaxial image cross-sections A) from the
8th time frame of a PET study, B) from the 8th time frame of
a phantom study. Examples of cross-sections of the Zubal brain
phantom: C) Striatum (consists of left and right caudate nuclei
and left and right putamen), D) Cerebellum.

dynamic PET images are segmented using an expectation-
maximization type algorithm and Markov random field
models. In [7] dynamic PET brain images are segmented
with an algorithm similar to the K-means clustering
algorithm. In this study, we evaluate and compare pattern
recognition methods (expectation-maximization algorithm,
fuzzy C-means algorithm and independent component
analysis) for automatic segmentation of PET brain images.

II. MATERIALS AND METHODS

A. Dynamic PET Images

We evaluated selected algorithms using a phantom image
simulated with Monte Carlo simulator and dynamic PET
brain studies of five different subjects. The image sizes
were ��� � ��� � �� voxels for the phantom image and
��� � ��� � �� for the human PET studies. We had
these 3-D images from 13 different time intervals. The
tracer in the PET imaging was C-11 Raclopride. The
images were reconstructed with the FBP (Filtered Back
Projection) method. With the phantom image we were able
to compare algorithms quantitatively whereas the human
studies allowed us to study the influence of individual
differences in tracer uptake to the segmentation results.
Example cross-sections of the phantom image, a human
PET image and the anatomical Zubal phantom are shown
in Figure 1.
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The phantom image was generated by using SORTEO
Monte Carlo simulator [6] based on the anatomical Zubal
phantom [8]. This Monte Carlo -based simulation
tool is dedicated to full ring tomographs. It is
able to generate realistic 2-D and 3-D emission and
transmission projections in accordance with the numerical
representations of the activity and attenuation media
distributions as well as the scanner geometry and physical
characteristics. The simulation model accounts for most
of the phenomena encountered during PET acquisitions
including the Poisson nature of the emission, positron
range in tissues, annihilation protons non-collinearity,
scatter, randoms and system dead-time.

B. Classification Problem

The aim is to extract striatum and cerebellum from
dynamic PET brain images. We assume that there are
eight functionally different brain structures present in the
images. Therefore, the number of clusters for classification
algorithms is nine (8 structures and the background clus-
ter). The data consists of time activity curves (TACs) �����
for each voxel �. However, we have no information about
continuous time activity curves, only a vector of measured
activities at distinct time intervals ���� � � � ���� �� �
��������� � � � � �������� for each voxel � (� � ��). These
vectors are the input for the classification algorithms.

Due to significant individual differences in the
radioactivity levels, supervised classifier for PET image
segmentation would have to be trained separately for
each image. Therefore, only unsupervised classification
is considered because we are after automatic image
segmentation. The algorithms considered in this study
are expectation-maximization (EM) algorithm, fuzzy
C-means algorithm (FCM) and independent component
analysis (ICA).

C. Classification Methods

1) Expectation-Maximization Algorithm:
The expectation-maximization (EM) algorithm is an iter-
ative procedure for maximum-likelihood (ML) estimation
of parameters of a multivariate Gaussian mixture model
[1], [4]. Assuming that the TACs �� in each class are
normally distributed, this allows for specifying class con-
ditional probability densities. After that voxels can be
classified by using a Bayes classifier.

The ML estimation aims to find parameter values that
maximize the probability of the observed time activity
curves. This is done by the EM algorithm. During the
estimation step of the algorithm, the probabilities of
a voxel belonging to certain class are computed using
current estimate of the probability function for the
class. During the maximization step, the new probability
functions for each class are computed. These steps are
iterated until a local maximum of the likelihood function
is found. The algorithm is guaranteed to converge to a
local maximum [3].

2) Fuzzy C-Means Algorithm:
Fuzzy C-means (FCM) algorithm is an iterative procedure
which approaches the classification problem by calculating
membership grades for voxels [4]. This is achieved by
minimizing cost function
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with respect to membership grades � ��� �� � �	� �� and
clustering centroids ��. The fuzzification parameter 	

defines the degree of “fuzziness”, i.e. how much of a
voxel can be classified to several classes. Voxels are
classified to clusters by their maximum membership
grades. The cost function in Eq. (1) implies that time
activity values for each voxel �������� � � � � ������� are
assumed to be uncorrelated and have equal variance.

3) Independent Component Analysis:
Independent component analysis (ICA) is a statistical
method for transforming an observed multidimensional
random vector into components that are statistically as
independent from each other as possible [5]. In this case
observations are time activity curves �� and independent
components (ICs) are 3-D images representing function-
ally different brain structures. These ICs are rarely binary
valued and therefore in order to achieve segmentation of
brain images the IC images have to be thresholded. In this
work, the threshold value for each IC image is selected
manually.

ICA assumes that distributions of ICs are non-Gaussian
and statistically independent. Note that these assumptions
do not directly concern classes. For solving independent
component analysis we use FastICA [5] algorithm which
is based on minimization of criterion derived from the
concept of mutual information. Note that there is no way
for determining either the order of the separated ICs or
their magnitudes.

D. Evaluation

The segmentation results of phantom studies were exam-
ined quantitatively by comparing the segmentation results
to anatomical ground-truth (Zubal brain phantom). The
applied criteria were miss classification rate and Tanimoto
coefficient values for each brain structure of interest. The
miss classification rate describes how large percentage
of voxels is incorrectly classified compared to the total
number of voxels, i.e. the smaller the miss classification
rate the better the classification result. Similarity of a
particular extracted brain structure and the anatomical
ground-truth can be assessed by Tanimoto coefficient.
Assume 
� and 
� are the numbers of voxels in sets ��
and ��, respectively, and 
�� is the number of voxels that
are in both �� and ��. The Tanimoto coefficient is then
defined as
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Fig. 2: Phantom results by using EM algorithm (on left) and
FCM algorithm (on right). A) transaxial view, B) coronal view
and C) sagittal view. The FCM algorithm classifies the striatum
and the grey matter to a same class so the striatum has different
grey level in the images on right than in the images on left.

The greater the Tanimoto coefficient the better is the result.

III. RESULTS

The segmentation algorithms (EM, FCM and FastICA)
were applied to the phantom image and to the PET
studies described in Section II. The striatum was extracted
with the EM algorithm and FastICA from phantom and
human studies. The cerebellum was separated only with
FastICA from phantom studies. The EM and FCM algo-
rithm classified cerebellum to same class with the grey
matter. The FCM algorithm classified also the striatum to
that class. The results with the phantom image express
how accurate segmentations of structures can in principle
be achieved with human data. These results were eval-
uated quantitatively and the quantitative results are in
Table 1. The values of Tanimoto coefficients and miss
classification rates indicate that the results of the FCM
algorithm were slightly better than the results of the EM
algorithm. However, the striatum was not classified to its
own class by FCM and therefore we were not able to
compute Tanimoto coefficient for it. The Tanimoto coeffi-
cient values of FastICA were considerably better than the
corresponding values of EM or FCM algorithms. However,
the thresholding step required by FastICA (cf. Section IIC)
was performed manually whereas other algorithms were
completely automatic.

By the EM algorithm we were able to separate striatum
and cerebellum from the phantom study satisfactorily.
Striatum separated by the EM algorithm is presented in
Figure 2A (in white). The striatum structure extracted by
the EM algorithm corresponded only approximately to the
anatomical structure of the Zubal brain phantom. Note
especially that sagittal sinus was classified to the same
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Fig. 3: Results of the FastICA. A) Phantom study, B) best result
from human PET images. From top transaxial cross-sections
of independent components corresponding to specific bounding
(striatum), unspecific bounding (cerebellum) and blood pool.

class as striatum as can be seen from transaxial cross-
section in Figure 1A. The EM algorithm was unable to
distinguish between cerebellum and grey matter. However,
grey matter and cerebellum were quite well extracted
from the rest of the brain. The striatum was separated
approximately by the EM algorithm from all five human
PET studies. An example segmentation result is shown in
Figure 5A. Cerebellum could not be extracted from any
of the PET studies by the EM algorithm.

By using fuzzy C-means algorithm we were unable to
separate striatum from the white matter from phantom
studies as can be seen from Figure 2B. Also a part of
the voxels in cerebellum (but not all) were classified to
the same class as striatum. Cerebellum and grey matter
could not be differentiated by the FCM algorithm. From
the human PET studies the FCM algorithm was not able
to separate striatum nor cerebellum to their own classes
as can be seen from Figure 5B. The region of spinal fluid
between the skull and the brain was separated from the
PET studies (the thin dark line in between lighter shades
of grey in Figure 5B).

The results of FastICA were nine images representing

Table 1: Tanimoto coefficients of found structures and miss classification
rates for Phantom studies.

EM FCM FastICA
Miss classification rate 0.3265 0.2644 –
Background 0.7660 0.8362 –
Grey matter 0.3991 0.4193 –
Striatum 0.3576 – 0.6533
Cerebellum 0.1347 0.1439 0.4860
Cerebellum and grey matter 0.5180 0.4858 –
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Fig. 4: Thresholded independent components from the phantom
study. A) Striatum, B) Cerebellum.

A B

Fig. 5: The best result of human PET studies by using A) the
EM algorithm and B) the FCM algorithm.

independent regional components. In other words FastICA
does not provide segmentations directly. With the phan-
tom image, the independent components corresponding
striatum and cerebellum structures matched well to the
ground-truth anatomy (see Figure 3). Striatum and cerebel-
lum extracted by manually thresholding the independent
component images are shown in Figure 4. From the
human brain studies generated IC images corresponding
to the functional structure of striatum and blood pool were
promising. The cerebellum could not be extracted from the
human brain studies.

With the human PET images, it was observed that
results of FastICA were least sensitive to noise. The
EM algorithm seemed to be most sensitive to patient
movement during the study and it was also most sensitive
to noise.

IV. DISCUSSION

The aim of this study was to compare pattern classi-
fication methods in automatic segmentation of dynamic
PET brain images. The EM algorithm, the FCM algorithm
and FastICA were selected as classification algorithms
because they have turned out to be useful methods with
similar problems. We would like to emphasize that the
segmentation was performed by using information about
dynamics of tracer uptake.

All three studied methods presented an identifiability
problem. This means that the order of interesting compo-
nents or classes were not always the same, i.e. striatum
could be in the first class with one PET study and in
the second with another PET study. The identifiability
problem seems to be more easily solved in the case of
clustering methods than in the case of ICA. With ICA
the problem was that independent components contained
voxels from several brain structures. However, as can be
seen from Figure 3, the highest intensities in the specific

bounding independent component relate to the striatum.
Also, the thresholding of independent components has to
be automated for automatic segmentation of brain images
using ICA.

The EM algorithm and ICA seemed promising for the
segmentation task in a sense that reasonable segmentation
results were achieved when low contrast to noise
ratio of the images is taken into account. The FCM
algorithm could not separate structures of our primary
interest (striatum and cerebellum). However, the miss
classification rate by the FCM algorithm was better
than with the EM algorithm with the phantom study.
The merits of the different algorithms were found to be
distinct and therefore it would be interesting to study the
combination of the methods. To conclude, we found that
most accurate results (i.e. volumes) were obtained by
ICA but the level of automation of ICA was somewhat
lower than with the other algorithms due to required
thresholding.
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