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ABSTRACT
In this paper a novel approach for realizing constant coef-
ficient matrix multiplication using few additions and sub-
tractions is proposed. This method is applicable in, e.g.,
FIR filter banks, transforms, and polyphase form FIR fil-
ters for sample rate changes. Examples show that the pro-
posed method yields good results compared to realizing the
matrix multiplication by utilizing multiple coefficient mul-
tiplication techniques for the rows or columns separately.

1. INTRODUCTION

The problem of multiplying one data with several constant
coefficients has been well studied over the years [1]–[8].
By expressing the multiplications using shifts and addi-
tions or subtractions, the number of additions required are
decreased by using common partial results. This is referred
to as multiple constant multiplication (MCM). It should be
noted that by transposing a MCM block a sum-of-product
is realized as shown in Fig. 1.

It is possible to outline the previously proposed approaches
into three different classes. The subexpression sharing al-
gorithms are based on finding recurring pattern in the coef-
ficient representation, and, hence, depends on the
representation of the coefficient [2]–[4], [6]. Multiplier
blocks uses a graph representation to construct a network
of adds and shifts, independent of the representation [1].
Finally, difference methods computes simple differences
between the coefficients, and then applying the same meth-
od to the differences [5], [7], [8].

In many DSP applications the computations are effectively
matrix multiplications on the form

(1)

where xi are inputs, yi outputs, and ai,j constants. A row is
denoted Ai. This is the case for, e.g., FIR filter banks [9],
linear transform, such as DCTs [10], polyphase decom-
posed FIR filters for sample rate changes [11], and state-
space digital filters [10], [12].

It is, off course, possible to apply MCM to each row of the
matrix and then transpose the block or each column and
add the different row elements together, but the redundan-
cy is not fully utilized.

In [13] an approach based on number splitting was pro-
posed. However, this is aimed at working with infinite pre-
cision number representation. A two-stage approach based
on subexpression sharing has been proposed in [2]. Here,
first subexpressions for the columns where identified and
then subexpressions for the rows. Recently, a multiplier
block algorithm for matrix multiplication was presented
[14].

In this work an algorithm for low complexity constant co-
efficient matrix multiplication based on differences is pro-
posed. It uses a minimum spanning tree (MST) to select the
coefficients, which warrants low execution time as an MST
can be found in polynomial time [15], [16]. In the next sec-
tion the graph representation is discussed. This is similar to
the one used in [5], [7], [8]. Then the proposed algorithm is
introduced, with some discussions of properties. Some ex-
perimental results are presented and compared with other
algorithms. Finally, some conclusions are drawn.

2. GRAPH REPRESENTATION

The use of minimum spanning trees for design of multiple
constant multipliers with low arithmetic complexity have
previously been proposed for the one input case [5], [7],
[8].

2.1. Undirected Graph

A row of the matrix multiplication and the relation between
the rows can be represented using an undirected graph,
where each vertex corresponds to one row of the matrix, Ai.
The graph is fully connected, i.e., it has edges between all
pairs of coefficients. These edges corresponds to the differ-
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Fig. 1. Multiple constant multiplication block and trans-
posed sum-of-products block.
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ence between the two rows and each edge is assigned a
cost, , corresponding to the minimal cost for imple-
menting the difference between the rows Ai and Aj. Fig. 2
shows an undirected graph for four rows.

2.2. Minimum Spanning Tree

An MST of a graph with weighted edges is a set of edges
that connects all vertices while minimizing the sum of the
edge weights, which in this case corresponds to minimizing
the implementation cost of the differences. This is a well
studied problem with several polynomial time algorithms
available [15], [16]. For a graph, an MST can be found us-
ing a greedy algorithm. Hence, a short execution time is re-
quired for computing an MST. Note that, in the general
case, a graph may have several MSTs.

Using an MST for selecting the differences often yields a
solution where one, or several, of the original coefficients
are used to form two, or more, differences. It is possible to
find a set of differences, yielding a minimal implementa-
tion cost, where each coefficient is used only once to com-
pute a difference by finding a Hamiltonian path in the
graph instead of an MST [5]. A Hamiltonian path is a path
that only visit each vertex once with a minimum cost. Find-
ing such path is an NP-hard problem. However, a Hamilto-
nian path may only yield a solution as good as an MST, it
will never be better.

The depth of an MST, i.e., the path from the root to the leaf
with the highest number of vertices between them, gives
the critical path of the difference stage. However, finding
an MST with a constrained depth is also an NP-hard prob-
lem.

3. PROPOSED APPROACH

The proposed approach can be divided into four steps. In
the discussion we will assume that all elements in the ma-
trix have integer values.
I. Identical rows are identified by first dividing each

row by a power of two so that at least one element is
odd. Then, the sign of each row is changed so that the
first non-zero element in a row is positive. Among the
rows that are identical, only one is kept. Furthermore,
rows that only contains a single one is removed from
the matrix.

II. If there are any rows left, the edge weights, i.e., the
cost for the differences, are determined using the cost
measure discussed in Section 3.1.

III. The MST is computed using an arbitrary method,
e.g., one discussed in [16].

IV. The required differences are now rows in a new
matrix. They are realized by applying the algorithm
to this matrix. This is further discussed in
Section 3.3.

3.1. Cost Measure

The cost for realizing a difference is here defined as the
number of additions required for realizing a difference us-
ing a minimum signed digit representation, e.g., canonic
singed digit (CSD) representation [10]. The difference be-
tween row i and row j is defined as

(2)

where m, n, and the sign is selected to minimize the cost.
By allowing shifts and variable sign it is possible to find
differences with lower cost. The cost, i.e., the number of
additions required to realize the difference is then

(3)

where #CSD(x) is the number of non-zero bits of the CSD
representation of x.

The differences corresponds to what must be added to one
row to obtain another row. However, at least one row must
be realized without the use of another row. This is handled
by adding a root vertex† to the graph. This vertex corre-
sponds to all possible rows with one non-zero element
equal to one, i.e., [1 0 0 ... 0], [0 1 0 ... 0], etc.

There are other ways to compute the cost to realize a single
row, i.e., a difference. For example, one could apply an
MCM algorithm to obtain a smaller cost [14]. However, us-
ing the proposed cost measure will guarantee convergence,
and that the total cost estimated after one stage will never
be exceeded.

3.2. Convergence

The algorithm will always converge in a maximum of

(4)

steps, i.e., proportional to the maximum number of non-
zero bits for one row. It is easy to realize this by noticing
that for the worst case, one stage is removing one non-zero
bit from each row. This is what happens when there is only
one row in the matrix. As the algorithm stops when there is
one non-zero bit left the expression in (4) follows.

The cost obtained from one MST is based on the fact that
each difference is realized using separate CSD multiplica-
tions and adding up the results for each row separately.
However, as the same approach can be used for the differ-
ences, we can guarantee that the MST cost is an upper
bound on the resulting number of additions for each stage.
Selecting other cost measures for the differences does not
have this advantage as the realization of the differences
then is different from the way the cost is computed.

ci j,
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†. The term root vertex is usually used in the case of
directed graphs. However, the graph in question can
be made a directed graph with each undirected edge
corresponding to two directed edges, one in each
direction, but because of that, it can be handled as an
undirected graph.
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Fig. 2. Graph corresponding to four matrix rows.
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3.3. Difference Selection

The actual savings in additions are obtained in two differ-
ent ways. First, by deriving rows from other rows with a
lower cost than deriving them from the root node. Second,
if any of the required differences are identical, only one of
them must be realized. For each edge there may be more
than one difference with minimum cost. Hence, the selec-
tion of differences is important.

The current implementation of the algorithm can, at each
stage, form all possible combinations of differences, and
compute the cost of the corresponding MSTs. Then, one
difference set with minimum cost is selected. However,
this is only possible to do in reasonable time when the
number of combinations are reasonably small, maybe up to
1000. Furthermore, selecting the difference set with the
lowest cost at one stage is not a guarantee that the total cost
after more stages will be minimized. This approach could
be extended to a complete tree search, where the algorithm
is applied to each possible combination of differences until
convergence.

It is also possible to transpose the difference matrix and ob-
tain a realization for the transposed matrix and then trans-
pose the network of additions and subtraction to obtain the
required rows. This may be especially useful when there
are few and long rows as the algorithm generally works
better on “high and narrow” matrices.

After the algorithm has converged it may be possible to
find identical differences in different stages. This can be
straightforwardly utilized by connecting a computed dif-
ference to a later stage, and, hence, save additions.

4. RESULTS

To illustrate the results with the proposed algorithm a
number of example matrix multiplications are realized.

4.1. Example 1

In this example the following linear transformation, de-
signed in [17] as an example of the algorithm in [2], is con-
sidered

(5)

A straightforward implementation using CSD representa-
tion requires 29 additions. Using the algorithm in [2] leads
to a total of 20 additions. Using RAGn [1] on the columns
leads to 21 additions, 9 for the coefficients and 12 for add-
ing the partial results. Applying it on the rows requires 22
additions (10 + 12). The algorithm in [14], here referred to
as BHMM, yields a solution with 14 additions.

For the first stage using the proposed approach the MST in
Fig. 3(a) is obtained. The total cost after the first stage is
15. The MST corresponds to the differences in (6) where R
denotes the root vertex and the other indices corresponds to
the row number in (5). These differences yields the MST in
Fig. 3(b) and a total cost of 14 (10 for the MST and 4 for
the previous stage).

(6)

The differences for the MST in stage 2 are

(7)

From this stage all rows are realized separately. This corre-
sponds to that all edges of the MST are between the root
vertex and any other vertex. The resulting realization with
14 additions is shown in Fig. 4. The paths corresponding to
the MSTs in Fig. 3 are marked in bold.

4.2. Example 2

In this example a linear-phase FIR filter for decimation
with a factor three is designed. The passband and stopband
edges are at 0.3π and 0.35π, respectively. The filter is de-
signed for a passband ripple of 0.01 and a stopband ripple
of 0.001. Using a filter order of 110 this filter is synthesized
in MATLAB using remez.m and rounding the coefficients to
12 bits precision.

A direct realization using CSD representation requires 218
additions. Applying RAGn [1] to the columns requires 52
+ 72 = 124 additions. The current implementation of the
BHMM algorithm [14] has problems handling negative
numbers, and, thus, can not be used for comparison.

Using the proposed method, 103 additions are required.
The algorithm converges in five stages. However, four ad-
ditions can be removed by identifying that the same differ-
ences are required in multiple stages. Hence, 99 additions
are required.

4.3. Example 3

In this example, general matrix multiplication with NxM
matrices is considered. The number of rows, N, varies be-
tween 2 and 10 in steps of 2 and the number of columns, M,
varies between 2 and 6. For each matrix size 20 random
matrices with 6 bits coefficients (max 64) are used. Only
positive coefficients are used due to problems with nega-
tive numbers in the current implementation of the BHMM
algorithm in [14]. The matrix multiplications are realized
using the proposed method (MMST), separate columns us-
ing RAGn [1], and by using BHMM [14].
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Fig. 3. MSTs in Example 1 for (a) stage 1 and (b) stage 2.
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In Table 1 all 500 cases are considered and the number of
cases where one algorithm is better than another is shown.
From this we can see that the BHMM algorithm in [14]
yields the best results in most cases. The proposed algo-
rithm beats BHMM in approximately 5% of the cases.
Comparing with separate generation of columns, the pro-
posed algorithm is better in 28% of the cases. Although, no
results are presented in this work, the execution time of the
proposed algorithm is consistently significantly lower than
that of the algorithm in [14].

5. CONCLUSIONS

In this paper an algorithm for constant coefficient matrix
multiplication with few additions and subtractions was pro-
posed. It is based on computing a minimum spanning tree
(MST) which gives that the algorithm executes in polyno-
mial time. The results show that the algorithm can produce
better results than applying standard multiple constant mul-
tiplication techniques to the rows or the columns separate-
ly. However, a useful technique would be to select the best
result among the proposed technique, the BHMM algo-
rithm in [14], and realizing each column separately using
the RAGn algorithm in [1].
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–

Table 1. Number of cases where one algorithm is better
than the other for the 500 random matrices in Example 3.

Algorithm 1 Algorithm 2
Number of additions

1 < 2 1 = 2 1 > 2
MMST RAGn 139 77 284
MMST BHMM 26 60 414
BHMM RAGn 264 82 54
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