Proceedings of the 6th Nordic Signal Processing Symposium - NORSIG 2004

June 9 - 11, 2004
Espoo, Finland

Protein is Compressible

Andrea Hategan and loan Tabus

Tampere University of Technology
Institute of Signal Processing
P.O. Box 553, FIN-33101 Tampere, FINLAND
hategan@cs.tut.fi, tabus@cs.tut.fi

ABSTRACT

We present a lossless compression algorithm, dubbed
here ProtComp, for sequences of amino acids. The
algorithm is adaptive, such that it can become efficient
for compressing a proteome, i.e. the ensemble of all the
protein sequences of a certain organism. The results
indicate that protein sequences possess statistically
relevant regularities, which can be exploited in order to
compress a given proteome, despite previous claims of
the contrary. We also show the ability of the algorithm to
compare proteomes and based on that to construct
evolutionary trees which are biologically plausible.

1. INTRODUCTION

Protein sequences are sequences formed of 20 amino-
acids, which can be thought of as symbols in an abstract
alphabet of 20 symbols. The fundamental importance of
proteins to all processes in living organisms makes the
study of protein sequences one of the most investigated
fields in computational biology. As more biological data
(DNA sequences, amino acids sequences) becomes
available, the need for tools capable of specific
manipulations such as searching for or comparing of
similar sequences is growing. On the other hand, from a
practical point of view, the compression of the biological
data leads to a more efficient use of resources like storage
space and bandwidth. Classic algorithms for text
compression cannot perform better than two bits per
symbol for DNA sequences or log, 20 bits per symbol for
amino acid sequences. This happens due to the fact that
the biological sequences obey other rules than human
created text. Both DNA and amino acid sequences have
regular features which are attractive from a compression
perspective. Generally, these regularities are approximate
repeats which can be explained biologically by errors in
the copying process. We analyze these regularities in
order to achieve compression.

A previous attempt at compressing proteins, [1],
presented a result in the negative, claiming from the title
that protein is incompressible. Their scheme proposed a
sophisticated context algorithm, where not only the
current context is used, but also similar contexts are used
for prediction, the weighting of contexts being dependent
on the mutation probabilities of amino-acids. However,
their results were not better than the results obtained with

©2004 NORSIG 2004

simple, low order Markov models, which led them to the
conclusion that the approximate repeats in protein cannot
provide statistically significant information to be
exploited for compression

In this paper we show that the results in [1] were too
pessimistic, and that the data set from [1] is compressible
in a ratio 1.3:1 by using a proper technique (as opposed to
the pessimistic ratio of 1.05:1 found in [1]). We propose
an algorithm which uses approximate repeats and
mutation probability for amino-acids, but different than in
[1]. Our algorithm is based on an optimal building of the
substitution probability matrix (containing the mutation
probabilities). The paper is organized as follows. In the
next section we present the compression algorithm and a
variation of it. In Section 3, we analyze the ability of our
algorithm to measure the “relatedness” between
proteomes. The results are presented in Section 4. Some
conclusions are drawn in section 5.

2. ALGORITHM FOR PROTEIN COMPRESSION
2.1 General Description

The sequence to be encoded is a certain proteome and it is
denoted by s,,5,,...,8, ,S; € {l,...,A} where 4 =20 is the

2Ong
length of the alphabet. The sequence is split into blocks
of length L and the current block is denoted by

yr = Vs VI = S(e-)141>+5S(k—1)L+2 Where & is the index
of the current block. For the current block we find a

regressor block denoted by x* =x,...,x; = s s

poO p+Ll-1o

with pS(k—Z)L+1, and p not necessarily being a
multiple of L. Let ny :LnT/LJ be the number of

complete blocks of length L and let M denote the
substitution matrix. The size of M is AxA.

ProtComp is a two pass algorithm. The goal of the first
pass is to build the substitution matrix M and the goal of
the second pass is the encoding of symbols. In the first
pass, for every current block y* we choose a regressor
block x* based on the number of matched symbols in the
corresponding position of x* and j*. If the number of
matches is greater or equal to a fixed parameter the
current sequence is marked and the substitution matrix is
updated. In the second pass all the blocks that were
marked in the first pass are encoded based on the

192

substitution matrix and using Huffman codes, while the
rest of the blocks are encoded based on a first order
adaptive Markov model and using arithmetic codes.

2.2 The Algorithm

Stepl For each current block yk, k =3,..,ng —1 find the

regressor having the largest number of matches. Let 7,, be
the number of maximum correct matches between the
current block and a regressor x* starting at p,, where
1< p, S(k—2)L+1. If n,>n, where nis a fixed

parameter, add the index of the current block, £, to the 7,
set and keep the p,, value which is the pointer to the
regressor. Update the substitution matrix, fori=1, ..., L

M(xf,y;c)zM(xf,yik)+l (1)
Step2 Transmitting the side information.

Step2.1 Let n; denote the number of indices in the set 7,
then transmitting these indices requires

L, =log, (Zf) bits)

Step2.2 For each row i in the substitution matrix M a
Huffman tree is built and the resulted codewords are
stored in the i-th row of a new matrix My. Transmitting
the My matrix requires

M

L =

trees

[1og2 (A)+ (24- 1)] bits 3)
i=0 '

where ¢,,t=1....,q; is the number of codewords of length

qi
x, in the i row so that Y ¢, = 4,i=1,..., 4.
=1

Step3 Transmitting the symbols. For each
k,k=1,.,ng—1if k is in the [, set go to Step3.I

otherwise go to Step3.2. The first two blocks are encoded
using Step3.1.

Step3.1 Transmitting a block using Huffman codes
requires

L
L =log, (k=2)L+1)+ X A(M, (e, v) vits — 4)
i=1
where logz((k—Z)L+1) is the cost for encoding the

pointer to regressor x* and A(c) is the length of codeword
c.

Step3.2 Transmitting a block using arithmetic codes
requires

L=-% 10g2(PA (vE, vk) SP, (yf‘l,j)J bits (5)

i=1 j=l1

where P, matrix represents the first order adaptive

Markov model. For i=1,y*, = yf , where k" is the last k
which was not in /,. After transmitting a block the P,
matrix is updated. Initially P, (i, j): LVi,j=1,..,4and
the first symbol of the sequence is transmitted using
log,(4) bits.

The last (i, —ngL) symbols are also transmitted using

arithmetic codes. Let rest denotes the cost of these
symbols. Then the total code length is

Lyt =Li + Lyoos +17Ly + (ng —n; —1)L, + rest bits (6)

trees

and L, /ny is the number of bits per symbol.

2.3 One Pass Version

In the one pass version of the algorithm a fixed
substitution matrix is used.

Let X denote a set of proteomes and ny denote the number
of proteomes in the set. For each i =1,..ny let M; denote

the substitution matrix built as described in section 2.2.
The fixed substitution matrix Mp, is built as follows:

AR

Mﬁx(iaj): HT

Vi, j=1,...,4 (7)

In the one pass version stepl and step2.l are skipped
because the M, matrix is known both by the encoder and
the decoder and it is not sent as side information.

We implemented three algorithms: ProtComp?2 is the
implementation of the algorithm described in section 2.2,
ProtComplHuff is the one pass algorithm which is using
Huffman codes to encode the blocks which have indices
in the set I, and ProtComplArithm is the one pass
algorithm which is using arithmetic codes to encode the
blocks which have indices in the set 7,,.

3. EVOLUTIONARY TREE

We tested the ability of our algorithm to measure the
relatedness between two proteomes and then to construct
an evolutionary tree, where relatedness is defined
similarly to mutual information, replacing entropy by real
codelength. The mutual information of two random
variables is the amount of information that one random
variable contains about another random variable. Let X
and Y be two random variables. Then the mutual
information [4] is

193

1(X,Y)=H(X)-H(X|Y)=H()-H({|X) (8

where H(-) is the entropy of a random variable and
H(-|-) is the conditional entropy of two random

variables. Since the entropy is an idealistic measure of the
average codelength for encoding a symbol generated by
the source, we may replace it by the implementable
average codelength obtained by our algorithms, to obtain
a realistic evaluation of average codelengths, or
information content. If we use ProtComp as a measure
for the average codelength, then the relatedness of two
proteomes is

R(X,Y)= ProtComp(X)— ProtComp(X | Y) (9)

To construct an evolutionary tree, a successive grouping
procedure based on the maximum value of R is used. At
each step, R is computed for all pairs of proteomes and
the two proteomes in the pair yielding the maximum R are
grouped. In the following steps the group is treated as one
proteome.

4. RESULTS
4.1 Compression Results

We tested our algorithm using the set of proteomes
presented in [1]. The set contains four proteomes:
Haemophilus Influenzae (HI), Saccharomyces Cerevisiae
(SC), Mathanococcus Jannaschii (MJ) and Homo Sapiens
(HS). The results are presented in Table 1. We noticed
that each sequence used in [1] contains very long exact
repeats. The algorithm presented in [1] is based on the
frequency of occurrences of the current symbol in all the
contexts of length /, where / = 1,2,3, and thus is unable to
exploit redundancy in far away repetitions. Our
algorithm, which is based on approximate repeats is
performing much better, as it can be seen from Tablel.
From complexity of the model point of view our model
needs two matrices of AxA size, while the model
presented in [1] needs a matrix of AxA4 size and a matrix
of A'x4 size.

Table 1. Compression results in bits per symbol. The
results of CP [1] and ProtComp2 results.

HI SC MJ HS
size 0.5Mb | 3Mb | 0.45Mb | 3.3 MB
Order-1 4.322 | 4.322 4.322 4.322
Order0 4.156 | 4.163 4.068 4.133
CP Orderl 4.149 | 4.158 4.060 4.126
CP Order2 | 4.146 | 4.152 4.056 4.120
CP Order3 | 4.143 | 4.146 4.051 4.112
ProtComp 2.33 3.44 2.87 3.91

Because the set of proteomes used in [1] is outdated, we
downloaded newer versions of these files from RefSeq
database [5] and we also added new proteomes to get a

new set of fifteen proteomes for testing our algorithm.
Compared with the recent versions, the proteome
sequences used in [1] were extremely redundant, they
contained very long repetitions of some subsequences,
which probably have proven to not be distinct proteins,
but just copies of the same protein, and they were
removed by the database maintainers. Consequently, the
new versions of the files are much more difficult to
compress. The files are in FASTA format which contains
some description lines that have to be removed before
using our algorithm, since we are interested here in the
compression of protein sequence, not that of the text
annotation part.

For the one pass version of the algorithm, ProtComplH
and ProtComplA, the fixed substitution matrix was built
as follows. We split the set of fifteen proteomes in two
sets, A and B. Based on 4 and B we built two fixed
substitution matrices as described in section 2.3. Let matA
and matB denote the two matrices. To report fair results,
the proteomes in 4 were encoded using the matB matrix
and the proteomes in B were encoded using the mat4
matrix. The results presented in Table 2 are obtained from
actual sizes of compressed files, which by decompression
provide files identical to the original files.

The good results obtained by ProtComp in Table 2 reflect
the fact that protein sequences have regularities which
can be exploited in order to achieve compression. Note
that the three algorithms produce very close results, i.e.,
when we use the two pass algorithm which builds a
substitution matrix and then transmits this matrix as side
information, or when we use the one pass algorithm
which uses a fix substitution matrix, the results are very
close. This shows that our method to build a fix
substitution matrix manages to capture some of the
regularities in proteomes. The third and fourth columns
show the results when compressing the files using general
use compression algorithms and the poor compression
obtained confirms that amino acids sequences obey other
rules than normal text.

4.2. Evolutionary Tree Inference Results

In order to test the ability of our algorithm to construct
evolutionary trees we used the proteomes of the same
organisms as in [2]. The following proteomes were used:
Archaeoglobus fuldidus (AF), Escherichia coli K-12
MG1655 (EC), Pyrococcus abyssi (PA), Pyrococcus
horikoshii (PH), Haemophilus influenzae Rd (HI),
Helicobacter pylori 26695 (HP1), Helicobacter pylori,
strain J99 (HP2).

The results in Table 3 show the first step in building the
tree. We compute the relatedness R(X, Y) between all
pairs of the 7 proteomes (note that R(X, Y) is not
symmetrical) and pick the pair of proteomes having the
highest sum R(X, Y) + R(Y, X) as being the most related,
and concatenate them together for the next step, where we

194

Table 2. Compression results in bits per symbol for a set of proteomes using ProtComp2, ProtComp1HufT,
ProtComp1Arithm, Rar and Winzip8. The values in the Length column are the number of amino-acids.

Name Length Rar Winzip8 | ProtComp | ProtComplH | ProtComplA

Nicotiana tabacum 26431 4,1 4,04 3,7982 3,754 3,7589
Mycobacterium tuberculosis 1325682 4,42 4,52 3,867 3,8859 3,8901
Mycoplasma pneumoniae 239747 4,44 4,53 39114 39111 3,9134
Archaeoglobus fulgidus 669596 4,56 4,62 3,999 4,0021 4,0037
Methanococcus jannaschii 488831 4,56 4,59 4,0067 4,0077 4,008

Mycobacterium leprae 538774 4,60 4,60 4,0155 4,0185 4,0204
Staphylococcus epidermidis 695265 4,57 4,63 4,0287 4,029 4,0292
Invertebrate iridescent virus 6 77553 461 4,62 4,0427 4,0291 4,0293
Campylobacter jejuni 508838 4,59 4.6 4,036 4,0349 4,0348
Mycoplasma genitalium 175930 4,66 4,64 4,0761 4,0697 4,0694
Paramecium bursaria Chlorella virus 128796 4,61 4,61 4,1457 4,0765 4,075

Shrimp white spot syndrome 124814 4,63 4,62 4,0956 4,0883 4,0879
Baizongia pistaciae 166176 4,69 4,66 4,0958 4,0888 4,0894
Haemophilus Influenzae 516246 4,65 4,67 4,1048 4,103 4,1034
Porphyra purpurea 50196 4,78 4,76 4,1595 4,1333 4,1327

deal with 6 proteomes for which we look for most related
pair. The process continues until we remain with a single
pair. The resulting tree shown in Figure 1 represents the
evolutionary tree built having as relatedness measure our
compression results for protein sequences (the length of
the branch is indicative of the distance between the two
organisms). It is remarkable that our tree has the same
graph as the evolutionary tree built in [2], the later being
built based on the compressibility of the DNA sequence
using a very different compression method.

Table 3. The relatedness R(X, Y) between all the
proteomes and the most related proteomes HP1 and HP2

AF | EC | PA | PH HI | HP1 | HP2
AF 0.02 | 0.13 | 0.12 | 0.01 | 0.01 | 0.01
EC | 0.01 0 0 0.3 0 0
PA | 0.17 | 0.02 1.51 | 0.02 | 0.01 | 0.01
PH | 0.15 | 0.02 | 1.52 0.01 | 0.01 | 0.01
HI | 0.02 | 0.83 | 0.02 | 0.01 0.10 | 0.10
HP1 | 0.02 | 0.12 | 0.01 0 0.11 2.21
HP2 | 0.01 | 0.13 | 0.01 | 0.01 | 0.11 | 2.24

5. CONCLUSIONS

A new lossless method for compression of sequences of
amino acids was proposed. Our results show that
certainly there are regularities in the sequences of amino
acids, which can be exploited to achieve better
compression than low order Markov models. Our results
are in deep contrast to the results previously reported in
[1], who led to a pessimistic view towards protein
compressibility. Moreover, the fact that biologically

plausible evolutionary trees can be built based on the
compressibility results is a hint that our compression
algorithm is based on capturing biologically meaningful
features of protein data. In the future work we will
investigate the use of gaps in the search for the best
regressor. The motivation for this is that by allowing gaps
the algorithm will be able to find more hidden regularities
than the repetitions modulo substitution which are used

now.

: Archaeoglobus fuldidus |

—| Escherichia coli K-12 MG1655 |

I-I Helicobacter pyloni 26695 |

Prrococcus abyssi |

Pyrococcus hotikoshi |

Haemophilus influenzae |

|—| Helicobacter pyloti, strain J99 |

Fig. 1. The evolutionary tree

REFERENCES

[1] Craig G. Nevill-Manning and Ian H. Witten, “Protein is
incompressible,” in DCC ‘99 Data Compression Conference,
Snowbird, Utah, March 1999, pp. 257. Available:
http://www.data-compression.info/Corpora/ProteinCorpus/

[2] X. Chen, S. Kwong and M. Li. “A compression algorithm for DNA
sequences and its applications in genome comparisons” in Genome
Informatics, 1999, pp. 10:51-61.

[3] L H. Witten, R. M. Neal, and J. G. Cleary, "Arithmetic coding for
data compression," Communications of the ACM, vol. 30, no. 6, pp.
520--540, June 1987.

[4] Thomas M. Cover and Joy A. Thomas, Elements of Information
Theory, New York, 1991.

[5] www.ncbi.nlm.nih.gov/genomes/MICROBES/Complete.html

195

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

