
Decoder Issues in Unlimited Finnish Speech Recognition

Teemu Hirsimäki and Mikko Kurimo

Helsinki University of Technology

Neural Networks Research Centre

P.O. Box 5400, FI-02015 HUT

FINLAND

Tel. +358-9-451 3284, Fax: +358-9-451 3277

E-mail: teemu.hirsimaki@hut.fi, mikko.kurimo@hut.fi

ABSTRACT

In contrast to continuous speech recognition systems which

utilize a fixed vocabulary to limit the search, practically

unlimited vocabulary recognition can be achieved by con-

structing the recognition result from sub-word units. This

paper discusses some important things to consider in sub-

word based decoders, especially when recognizing lan-

guages with heavy use of inflections and compound words.

Also, a decoder design implemented to achieve unlimited

vocabulary Finnish speech recognition is described.

1. INTRODUCTION

Majority of the modern speech recognition systems use

Hidden Markov Model (HMM) to model the acoustics of

phonemes. In such systems, the central part, called de-

coder, is responsible for finding the most probable HMM

state sequence, given the observed speech, acoustic model,

and language model. In order to limit the search space,

which contains all possible state sequences, the decoders

usually consider only words in a fixed lexicon. This ap-

proach has been quite successful, especially in languages

like English, which do not have too many inflectional forms

or compound words. However, in many European lan-

guages like Finnish, Turkish, Czech or German, the inflec-

tions and compound words are so common, that covering

all possible word forms in a simple lexicon is not very ef-

fective. For example, a lexicon of two million words may

be needed in Finnish to get the same coverage as a 64 000-

word lexicon gives in English [1].

To improve the recognition of these languages, there has

been active research on approaches which abandon the

word-based lexicon. In [2], grammatical morphemes for

Czech were generated with a morphological analyzer. The

out-of-vocabulary rate decreased clearly, but the word error

rates were similar to a word-based approach. In [1], four

different rule-based methods to split words into sub-word

units were experimented for Finnish and German tasks with

good results. The unsupervised data-driven word splitting

algorithm presented in [3] has been found to be very effec-

tive in Finnish [4] and Turkish [5] speech recognition.

In contrast to splitting words into smaller units, other meth-

ods have also been proposed to tackle the problem of vocab-

ulary growth. In [6], a dynamical lexicon adaptation was

studied in German recognition task. A traditional word lat-

tice generated in the first pass recognition was expanded by

adding inflectional forms for each word in the lattice. This

expanded lattice was then used in the second pass with bet-

ter results. In [7], the error rates were reduced by growing

the lexicon sizes up to 500 000 words in German broadcast

news task.

The main contribution of this paper is to discuss how the

use of sub-word units instead of whole words affects the

other parts of a HMM based recognition system. The most

important issues are how word breaks can be modeled, and

how the choice of the sub-word units affect the search space

in which the decoder tries to find the most probable state

sequence. Also, with respect to these issues, the paper

presents the decoder of the speech recognition system used

in the Neural Networks Research Centre in Helsinki Uni-

versity of Technology. The system has been used to exper-

iment different sub-word units in order to achieve practi-

cally unlimited vocabulary speech recognition for continu-

ous Finnish speech. The emphasis of the paper is in the de-

coding process, so other important parts of a typical speech

recognition system as feature extraction, acoustic modeling

and language modeling are not discussed in detail.

2. DECODER ISSUES

2.1 Search Problem

Strictly speaking, the task of the decoder in the HMM-

based recognition systems is to find the most probable state

sequence given the observed speech signal, acoustic model,

and language model. If the decoder had infinite amount of

time, the decoding would be very simple indeed: The de-

coder could compute the probability of every possible state

sequence in turn and pick the most probable one. However,

the number of possible state sequences is astronomical even

for a short segment of speech, which is the reason why there

exists so many different decoding and pruning strategies. A

good overview of the fundamental ideas is presented in [8].

2.2 Morphs

As a lexicon of words can be used to limit the search to the

most frequent words, it is also an option to have a collec-

tion of sub-word units that are considered during the search.

From now on, the term morph is used to refer one of these

Proceedings of the 6th Nordic Signal Processing Symposium - NORSIG 2004
June 9 - 11, 2004
Espoo, Finland

©2004 NORSIG 2004 320

sub-word units. A morph can be a whole word, syllable,

grammatical morpheme, or something else as long as it is

found in the morph lexicon.

2.3 Word Breaks

There are a few things that need special attention when

morphs are used instead of whole words. With a word lex-

icon, it is clear that there is a word break after each lexical

unit (i.e. word). But now that several morphs can be con-

catenated into a single word, the breaks must be inferred in

some other way. Acoustically, long silences obviously mark

word breaks, but unfortunately in fluent speech, there are

seldom clear silences between words. On the other hand,

humans seem to conclude the word breaks mostly by un-

derstanding the words and meaning. Thus, a simple solu-

tion is to have a word break morph in the morph lexicon,

and let the decoder consider a break between each morph

even without acoustical evidence. Then it is left for the lan-

guage model to get the word breaks right. This approach

was taken in our decoder.

2.4 Choosing the Optimal Morphs

2.4.1 Limiting the Search Space

In principle, the decoder algorithms do not care what kind

of morphs are used, but nevertheless, they are an important

factor in the recognition process. Firstly, it is good to note

that the lexicon limits the search to some state sequences,

so it is a strict pruning method in contrast to acoustic and

language models, which prune sequences softly by assign-

ing probabilities. Thus, the selection of the morph set con-

trols the trade-off between the two following two issues:

How well the words of the language can be built from the

morphs, and how much the morph set is able to limit the

search. If the morphs are short, they can cover the words of

the language well, but they allow as well many words that

are not grammatically correct words but still very close to

the correct ones acoustically. Also, it is very hard to get

good language models over very short morphs, e.g. just

phonemes. On the other extreme, there is the word lexi-

con, which can not cover all possible words, but limits the

search effectively.

2.4.2 Pronunciation

In addition to limiting the search, the lexicon also provides

pronunciation of the morphs, i.e. the sequence of the HMM

states that form the morph. In Finnish, for example, the pro-

nunciation of a morph can be derived quite accurately from

the written form, while in the English, it is often necessary

to know the whole word to deduce the pronunciation. Thus,

in some languages the pronunciation may dictate what kind

of morphs are useful.

2.4.3 Context-Sensitive Acoustic Models

Also, the choice of the phoneme models is related to the

morphs. In context-sensitive acoustic modeling, several

separate models are trained for each phoneme, depending

on the context of the phoneme. Then the length of the

morphs makes a difference, especially if the decoder is not

able to model the phoneme context across lexical units. In

this case, it is clear that longer morphs benefit more from

the context-models, because shorter morphs induce more

morph boundaries that prevent the use of the context. How-

ever, even if the decoder can take the cross-morph con-

texts into account, the computational overhead may depend

quite much on the length of the morphs. Typically, expand-

ing the context over the boundaries of the lexical units in-

volves using several copies of the lexical tree, and if there

are more boundaries where the context needs to be taken

into account, the computational cost may be higher. For

interested readers, a detailed description of using context-

sensitive models across words is presented in [9].

All in all, it seems to be an open question what kind of

morphs are optimal for speech recognition, if very large vo-

cabularies are desired, but most likely, the chosen decoding

approach has also an effect. This should always be kept

in mind when different splitting methods are compared in

speech recognition tasks.

3. DECODER DESIGN

3.1 Overview of the Decoder

The stack decoding principle used in the decoder is based

on the stack decoder of the Duisburg University, Ducoder

[10]. During the recognition process, the decoder maintains

a set morph sequences that have most probably generated

the observations up to a certain frame. These most probable

morph sequences are called hypotheses, and they are orga-

nized in stacks according to their ending times. Each time

frame has a stack of the most probable hypotheses ending

in the frame in question.

The basic idea of the decoding process is as follows. Ini-

tially, there is only one empty hypothesis in the stack of

the first frame. At each step, the decoder moves forward to

the first frame containing hypotheses (this is also the ear-

liest frame containing hypotheses). Then the decoder uses

the morph lexicon and the acoustic models to make a lo-

cal search to the near future (1–2 seconds, for example)

for the acoustically best morphs starting from the current

frame. Then the decoder takes each hypothesis from the

current stack in turn, and makes several copies of the hy-

pothesis by appending each of the most promising morphs

at time. The newly created hypotheses are put in the future

stacks according to the best ending times of the morphs that

were used to expand the hypotheses (see Fig. 1). After ex-

panding each hypothesis with each of the most promising

morphs, the hypotheses in the current stack are discarded,

and the decoder can proceed to the next frame that contains

hypotheses.

321

ydinvoi#
ydinvoi

ydinvoimala#
ydin#voimala

voimala

ydin#voi

Time

ydinvoimala
ydin#
ydin

ydin#voimala#ydin#voi#

voi

1 2 3 4 5

Fig. 1. The hypotheses in the stack 1 are expanded by find-

ing the acoustically best morphs, and the expanded hy-

potheses are placed in stacks 3 and 5 according to the best

ending times of the morphs. The hypothesized word breaks

are marked with #.

3.2 Local Acoustic Search

The acoustically best morphs are searched using a morph

lexicon tree. All legal morphs are combined into a big

branching HMM, and common prefixes of the morphs are

merged. Because the language model is not used in the lo-

cal search, a traditional Viterbi search can be used to com-

pute the best paths for each morphs effectively. As a result,

the computation provide the cumulative log-probability of

the best path for each morph end state for each time frame.

Then the best ending times can be selected for each morph,

and the best morphs (on average) can be chosen.

3.3 Using Language Model Probabilities

As mentioned above, the local search, i.e. finding the best

morphs starting from a given frame, is done using only the

acoustic models. In this decoding approach, it is not easy

to use the language model information in acoustic search,

because the morph history is ambiguous: The acoustically

promising morphs can follow different morphs (in differ-

ent hypotheses). Thus, whenever a new hypothesis is cre-

ated by appending a previously found potential morph to a

hypothesis in the current stack, the language model prob-

ability of the hypothesis can be updated, because for each

hypothesis the morph history is unique.

3.4 Pruning Hypotheses

Of course, the basic idea described above would drown the

decoder in the exponentially growing number of hypotheses

unless some pruning method is used to discard the most

improbable ones.

Firstly, it is important to prune hypotheses that can not end

up in the recognition result. For example, if two hypothe-

ses ending on the same frame contain the same morph se-

quence, but have the morph boundaries on different frames,

it is known for sure that the more probable hypothesis will

be more probable in the end, whatever happens. This is

due to the fact that the future acoustic and language model

probabilities do not depend on the alignment of the history.

Actually, the language model probabilities depend only on

n − 1 most recent morphs, if an n-gram model is used, so

whenever a hypothesis is put in a stack, the decoder checks

if there exists a hypothesis with the same n− 1 most recent

morphs, and stores only the more probable one.

The above mentioned pruning is exact in the sense that it

never introduces more errors. However, in practice, addi-

tional prunings are needed to make the decoding compu-

tationally feasible. The most obvious pruning is to limit

the size of hypothesis list on each frame, so that a hypoth-

esis is stored only if it is among the n best hypotheses, and

its log-probability is not worse than a fixed threshold when

compared to the most probable hypothesis in the stack.

All of the above prunings consider only hypotheses in-

side a single stack. Comparing hypotheses on different

frames is not so straightforward, because it is hard to es-

timate how much the log-probability of the shorter hypoth-

esis will change when it reaches the other hypothesis. Some

approaches to compare hypotheses on different frames are

discussed in [10].

4. DISCUSSION AND CONCLUSIONS

In this paper, we have discussed the relevant decoding and

modeling issues when sub-word units are used instead of

words. We have as well presented our stack decoder de-

sign for unlimited vocabulary continuous speech recog-

nizer, which utilizes language models and lexicon based on

sub-word units. We have earlier used the system to compare

a word-based lexicon with different sub-word units. With

the morpheme-like units instead of words, the word error

rate decreased from 56% to 32% in a very large vocabulary

Finnish recognition task. Corresponding letter error rates

were 14% and 7.3% [4].

The decoder design is by no means optimized for sub-word

recognition. Originally, the decoder approach was cho-

sen so that it would be useful for studying language mod-

els which may also use much wider contexts than tradi-

tional n-gram-models. In a different decoding approach,

the lexicon, language model and possible context-sensitive

phoneme models are combined into a big HMM before the

recognition. Even if language models exploiting long con-

texts may produce vast number of states in the HMM, min-

imization techniques can be used to allow the use of even

6-gram models [11]. However, other than n-gram models

might be more difficult to incorporate in this approach.

As such, replacing the word lexicon with a morph lexi-

con should be quite straightforward in other decoding ap-

proaches too. It just has to be kept in mind, that the choice

of the morphs affects generating the pronunciation lexicon,

modeling the word boundaries, and handling the context-

sensitive phoneme models. Especially, when comparing

different word splitting algorithms, one has to be careful

that comparisons are fair.

322

REFERENCES

[1] J. Kneissler and D. Klakow, “Speech recognition for huge

vocabularies by using optimized sub-word units,” in Pro-

ceedings of the 7th European Conference on Speech Com-

munication and Technology (Eurospeech), Aalborg, Den-

mark, 2001, pp. 69–72.

[2] W. Byrne, J. Hacič, P. Ircing, F. Jelinek, S. Khudanpur,

P. Krbec, and J. Psutka, “On large vocabulary continu-

ous speech recognition of highly inflectional language —

Czech,” in Proceedings of the 7th European Conference on

Speech Communication and Technology (Eurospeech), Aal-

borg, Denmark, 2001, pp. 487–489.

[3] M. Creutz, “Unsupervised discovery of morphemes,” in

Proceedings of the Workshop on Morphological and Phono-

logical Learning of ACL-02, Philadelphia, Pennsylvania,

July 2002, pp. 21–30.

[4] V. Siivola, T. Hirsimäki, M. Creutz, and M. Kurimo, “Un-

limited vocabulary speech recognition based on morphs dis-

covered in an unsupervised manner,” in Proceedings of the

8th European Conference on Speech Communication and

Technology (Eurospeech), Geneva, Switzerland, Sept. 2003,

pp. 2293–2296.

[5] K. Hacioglu, B. Pellom, T. Ciloglu, O. Ozturk, M. Ku-

rimo, and M. Creutz, “On lexicon creation for Turkish

LVCSR,” in Proceedings of the 8th European Conference

on Speech Communication and Technology (Eurospeech),

Geneva, Switzerland, Sept. 2003, pp. 1165–1168.

[6] P. Geutner, M. Finke, and P. Scheytt, “Adaptive vocabularies

for transcribing multilingual broadcast news,” in Proceed-

ings of the IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), Seattle, Washing-

ton, May 1998.

[7] K. McTait and M. Adda-Decker, “The 300k LIMSI German

broadcast news transcription system.” in Proceedings of the

8th European Conference on Speech Communication and

Technology (Eurospeech), Geneva, Switzerland, Sept. 2003,

pp. 213–216.

[8] X. L. Aubert, “An overview of decoding techniques for

large vocabulary continuous speech recognition,” Computer

Speech and Language, vol. 16, no. 1, pp. 88–114, Jan. 2002.

[9] A. Sixtus and H. Ney, “From within-word model search

to across-word model search in large vocabulary continu-

ous speech recognition,” Computer Speech and Language,

vol. 16, no. 2, pp. 245–271, Apr. 2002.

[10] D. Willett, C. Neukirchen, and G. Rigoll, “Ducoder - the

Duisburg University LVSCR stackdecoder,” in Proceedings

of the IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), Istanbul, Turkey, 2000,

pp. 1555–1558.

[11] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state

transducers in speech recognition,” Computer Speech and

Language, vol. 16, no. 1, pp. 69–88, Jan. 2002.

323

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

