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ABSTRACT

The contribution of this paper is a time-frequency domain
speech presence detection method that classifies power bins
in the time-frequency domain as containing speech or not.
An initial decision rule is based on ratios between opti-
mally time-smoothed signal-plus-noise periodograms and
weighted noise periodogram estimates, obtained from mini-
mum statistics as proposed by Martin [1]. The initial de-
cision rule is generalized into a weighted decomposition
where the weights are obtained from off-line training by
means of an artificial neural network. Experiments show
that the method can be configured to be very sensitive to
speech presence even in very high levels of noise and with-
out classifying much of the noise as speech. It is shown that
a fixed set of weights gives good performance at different
signal-to-noise ratios indicating that the terms in the deci-
sion rule have been adequately chosen.

1. INTRODUCTION

Methods for speech enhancement are often developed ex-
plicitly without the use of speech presence detection meth-
ods. A consequence hereof is that most of these methods
suffer from musical noise in the speech estimate. MMSE-
LSA by Ephraim and Malah [2] handles this problem very
well by both attenuating the power and lowering the dy-
namics of rapid changing power at bins with low signal-to-
noise ratios, but some noise still remains in the estimated
speech. Cohen [3] has shown that by including signal pres-
ence uncertainty in the estimation the speech quality can be
improved. In this paper we propose a speech presence de-
tection method aimed for use in any time-frequency domain
speech enhancement method such that different attenuation
rules can be applied for different speech presence decisions.
The approach taken utilizes a trained linear combination
of a few terms in a logarithmic domain. These terms are
available from standard minimum statistics calculations [1].
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Therefore the resulting decision rule can be implemented
with very little overhead as an addition to a minimum statis-
tics based method. We approach the problem from a simple
threshold on the ratio between estimated signal-plus-noise
power spectral densities and estimated noise power spectral
densities and decompose this expression as terms in a log-
arithmic domain. This expression is easily generalized and
optimized using neural network methods. This generalized
framework provides a method to evaluate the importance of
the different factors of minimum statistics for speech pres-
ence detection. The resulting binary decision rule can be
incorporated in speech enhancement methods such that two
different attenuation rules can be applied.
The remainder of this paper is organized as follows. In Sec-
tion 2 we introduce the signal model and describe the terms
that are used in the decision rule. The decision rule and how
it is generalized and optimized using neural network meth-
ods is described in Section 3. Section 4 contains a brief
description and results of the experiments and in Section 5
we give a discussion of the proposed method.

2. SIGNAL MODEL

We assume that an observation y(i) at sampling time index
i consists of speech s(i) and additive noise n(i). We further
assume that the signals are zero mean and statistically inde-
pendent. For time-frequency analysis of y(i) the N -point
Short-Time Fourier Transform (STFT) is applied, i.e.

Y (λ, k) =
L−1∑
µ=0

y(λR + µ)h(µ) exp (−j2πkµ/N) , (1)

where λ ∈ [−∞;∞] is the (sub-sampled) time index, k ∈
[0;N − 1] is the frequency index, L is the window length
(in this paper we have that L = N ), R is the number of
samples that successive frames are shifted, and h(µ) is a
unit power window function, i.e.

∑L−1
µ=0 h2(µ) = 1. In the

time-frequency domain we have that

Y (λ, k) = S(λ, k) + N(λ, k). (2)
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To lower variance of the periodogram power spectral den-
sity estimates the observation periodograms PY (λ, k) �
|Y (λ, k)|2 are recursively smoothed over time with time
varying smoothing parameter α(λ, k) at each frequency, i.e.

P (λ, k) = α(λ, k)P (λ − 1, k) + (1 − α(λ, k))PY (λ, k). (3)

The optimum smoothing parameter is both derived and mod-
ified to suit a practical implementation by Martin [1]. This
particular smoothing method has the ability to both lower
the smoothing parameter and follow power changes when
the power change is large and in particular when the total
power between frames changes and at the same time provide
a high degree of smoothing elsewhere for each frequency.
This motivates its use in speech presence detection where
the distinct edges provides easy distinction between periods
with and without speech presence.
As the first step towards finding an estimate of the noise
periodogram a minimum search window is applied to the
smoothed observation periodograms to find biased, but rep-
resentative values Pmin(λ, k) for the noise. The length D
of the minimum search window should be chosen such that
successive frequency bins with speech presence are ’brid-
ged’ by the minimum search window. This way the mini-
mum tracked values will be unaffected by presence of speech.
In order to compensate for the bias towards lower values that
results from a minimum tracking of the smoothed periodo-
grams we use the method proposed by Martin [1] where
Pmin(λ, k) is multiplied with a bias compensation factor
Bmin(λ, k) obtained from experiments and parametrized in
the length of the minimum search window D and the es-
timated variances of the noise power spectral density and
signal-plus-noise power spectral density. A factor Bc(λ, k)
improves the noise periodogram estimate when these es-
timated variances themselves have large variances. Mul-
tiplying with Bc(λ, k) corresponds to an addition propor-
tional to the normalized standard deviation of P (λ, k). This
leads to an estimation P̂N (λ, k) of the noise periodogram
PN (λ, k) � |N(λ, k)|2 given by

P̂N (λ, k) = Bc(λ, k)Bmin(λ, k)Pmin(λ, k). (4)

3. SPEECH PRESENCE DETECTION

The main contribution of this paper is how the properties
of the smoothed periodograms P (λ, k) are exploited in a
binary decision rule for the detection of speech presence.
Because the presence of speech will cause a power increase
in P (λ, k) at a particular frequency it can be assumed to be
higher than an estimated noise periodogram P̂N (λ, k) for
the same time-frequency location, thus this ratio yields a
robust measure (due to the smoothing) of the signal-plus-
noise to noise ratio in the time-frequency bins. The smooth-
ing will ensure that fluctuations in the speech power does
not affect the speech presence detection.

3.1. Initial Binary Decision Rule

As a rule to decide between the two hypotheses H0(λ, k):
’No Speech Present’ and H1(λ, k): ’Speech Present’, i.e.

H0(λ, k) : Y (λ, k) = N(λ, k) (5)

H1(λ, k) : Y (λ, k) = N(λ, k) + S(λ, k), (6)

we use a binary decision rule where the smoothed observa-
tion periodograms P (λ, k) are compared with the estimated
noise periodograms P̂N (λ, k) weighted with γ, i.e.

P (λ, k)
H1(λ,k)

≷
H0(λ,k)

γP̂N (λ, k). (7)

3.2. Generalized Binary Decision Rule

The initial decision rule, with γ replaced by 10a for later
convenience, is generalized using the decomposition (4) and
weights are applied as follows,

P (λ, k)
H1(λ,k)

≷
H0(λ,k)

10aBb
c(λ, k)Bc

min(λ, k)P d
min(λ, k). (8)

We apply the logarithm (base 10) on both sides and end up
with a sum of weighted terms, i.e.

log(P (λ, k))
H1(λ,k)

≷
H0(λ,k)

a + b · log(Bc(λ, k))
+ c · log(Bmin(λ, k))
+ d · log(Pmin(λ, k)), (9)

thus well suited for training of the weights by means of an
artificial neural network.

3.3. Artificial Neural Network Training

Fig. 1 illustrates the artificial neural network that is used to
train the weights of the generalized binary decision rule.
We have used a substitution for generality, i.e.

x1 = log(P (λ, k)), w1 = 1, bias = −a,

x2 = log(Bc(λ, k)), w2 = −b,

x3 = log(Bmin(λ, k)), w3 = −c,

x4 = log(Pmin(λ, k)), w4 = −d. (10)

3.3.1. Search for Initial Weights

Different costs are assigned to the two different types of er-
rors, i.e. the cost of taking decision D0(λ, k) when H1(λ, k)
is true is C01 and the cost is C10 for the opposite case. No
cost is assigned for correct decisions. The neuron function
ϕ(·) and the cost function c(·) used to find initial weights
for the subsequent training are illustrated in Fig. 2.
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Fig. 1. The artificial neural network (solid) that is trained to
find the weights of the generalized binary decision rule. The
feedback loop with the cost function is dashed. ν = 0 for
D0(λ, k) and ν = 1 for D1(λ, k), where Di(λ, k) means
deciding on Hi(λ, k) for i ∈ {0, 1}.
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Fig. 2. The neuron function (left) and cost function (right)
used in the search for initial weights.

3.3.2. Training using a Back-Propagation Error Algorithm

The initial weights are used to initialize the artificial neu-
ral network that is trained using a back-propagation error
algorithm (BPEA) [4, 5], which requires differentiable neu-
ron and cost functions. We therefore approximate the step
neuron function by a differentiable sigmoid function, i.e.

ϕ(ψ) =
1

1 + exp(−β · ψ)
, (11)

with β = 1000 and we choose the cost function to be

c(η) = k1 · η2 · exp(−k2 · η), (12)

with k1 = 4.4721 and k2 = 1.4979 which has a monotoni-
cally increasing derivative within the range of η and it satis-
fies c(−1) ≈ 20, c(0) = 0, and c(1) ≈ 1 (thus matching the
cost of errors chosen in the experiments). Their derivatives,
which are necessary in order to derive the BPEA are given
by

ϕ′(ψ) = β · ϕ(ψ)(1 − ϕ(ψ)), and (13)

c′(η) = k1 · η · exp(−k2 · η)(2 − k2 · η). (14)

To prevent the network from being skewed towards the most
recent training patterns we use cumulative weight adjust-
ment [5] where the weights are updated after each epoch
(an iteration though the whole training set).

4. EXPERIMENTAL RESULTS

The training set is composed of four different male and
four different female speakers from the TIMIT database [6].
The same composure constitutes the evaluation set and not
two speakers nor sentences are the same. Each set is con-
catenated into speech sequences of approximately 30 sec-
onds. To have a local changing signal-to-noise ratio non-
stationary highway noise is added to the two speech sets in
various overall signal-to-noise ratios. Different noise record-
ings are used for the training and evaluation set. The con-
stants used as part of the minimum statistics approach are
the same1 as used by Martin [1] and the sample frequency is
8 kHz. In the experiments the costs of decisions are chosen
as C10 = 1 and C01 = 20. We define the periodogram bins
with no speech presence as the bins below a time-frequency
noise floor selected such that 5% of the clean speech power
is in bins with power below the floor. This leads to a pos-
teriori probabilities for no speech presence P (H0) = 0.924
(and speech presence P (H1) = 0.076) for the training set
and P (H0) = 0.921 (and P (H1) = 0.079) for the evalua-
tion set. Informal listening tests have shown that removing
these bins from the clean speech causes a slightly tonal but
still pleasant character with full speech intelligibility.

4.1. Initial Weights

The initial weights in Table 1 are obtained as the weights
with the lowest total cost in the training set found among
all possible combinations of a ∈ {−2,−1.99, . . . , 1.99, 2},
b ∈ {0, 1}, c ∈ {0, 1}, and d ∈ {0, 1}.

SNR a b c d SNR a b c d

0 dB -0.38 0 0 0 15 dB -0.63 1 0 0
5 dB -0.59 1 0 0 20 dB -0.53 1 0 0
10 dB -0.61 1 0 0 25 dB -0.52 1 0 0

Table 1. The initial weights that gave the lowest total cost
of the training set at different signal-to-noise ratios (SNR).

To find consistency in the best initial weights it was investi-
gated how much the total cost would increase at 0 dB signal-
to-noise ratio by limiting the search to all possible com-
binations of a ∈ {−2,−1.99, . . . , 1.99, 2} and [b, c, d] =
[1, 0, 0]. The resulting best initial weights were [a, b, c, d] =
[−0.58, 1, 0, 0] and the total cost using these weights was
only 0.64% larger than the best initial weights from Table
1. We chose the initial weights obtained at 5 dB signal-to-
noise ratio to be representative for all signal-to-noise ratios
and investigate the performance if these initial weights were
used as final weights. The results are listed in Table 2.

1The only exception being that Qeq(λ, k) is lower limited by 10 and
not 2 as used by Martin. This change improved our implementation of
Martins method [1].
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SNR = 0 dB SNR = 5 dB SNR = 10 dB
P (D|H) H0 H1 H0 H1 H0 H1

D0 0.80 0.04 0.88 0.04 0.92 0.03
D1 0.20 0.96 0.12 0.96 0.08 0.97

Table 2. Conditional a posteriori probabilities P (D|H) for
the evaluation set when the initial weights for 5 dB from
Table 1 are used at all signal-to-noise ratios.

4.2. Trained Weights

The weights from the neural network BPEA training with
stepsize µ = 10−9 and a total cost change between epochs
(more than 2 · 105 training samples) less than 0.001 as con-
vergence criterion are listed in Table 3. The performance of
the trained weights are listed in Table 4 for both the training
and the evaluation set.

SNR a b c d Epochs

0 dB -0.5626 0.9919 -0.0167 0.0002 4542
5 dB -0.5904 1.0008 -0.0048 -0.0021 1149
10 dB -0.5896 1.0000 -0.0001 -0.0019 152

Table 3. The resulting weights corresponding to a station-
ary point on the total cost ’surface’ when the neural network
is initialized to the initial weights for 5 dB from Table 1.

SNR = 0 dB SNR = 5 dB SNR = 10 dB
P (D|H) H0 H1 H0 H1 H0 H1

D0 0.78 0.04 0.88 0.03 0.93 0.03
D1 0.22 0.96 0.12 0.97 0.07 0.97

SNR = 0 dB SNR = 5 dB SNR = 10 dB
P (D|H) H0 H1 H0 H1 H0 H1

D0 0.80 0.04 0.88 0.04 0.92 0.03
D1 0.20 0.96 0.12 0.96 0.08 0.97

Table 4. Conditional a posteriori probabilities P(D|H) for
the training set (top) and evaluation set (bottom) when the
trained weights from Table 3 are used.

5. DISCUSSION

We have proposed a time-frequency domain binary classi-
fication method that classifies periodogram bins as ’speech
present’ or ’no speech present’. The proposed method is
computationally efficient once the weights of the general-
ized decision rule have been trained in the artificial neu-
ral network and can be included in methods with minimum
statistics based noise estimation [1] without any significant
increase in computational cost. If the decision method is
combined with other methods the bias compensation can be
omitted at a very low decrease in detector performance.

By experiments we have shown that the speech presence
detection method is efficient over a large range of signal-to-
noise ratios using the same weights in the decision rule for
all signal-to-noise ratios. Depending on the exact applica-
tion of the decision method the ratio C01/C10 between the
cost of the two different types of wrong decisions could be
chosen differently which would yield other weights and dif-
ferent classifier properties. The high cost for falsely classi-
fying time-frequency bins with speech presence as without
speech presence used in the experiments is most useful for
accurate noise estimation because the ’no speech presence’
classification is unlikely to be contaminated by undetected
presence of speech.
Smoothing across frequencies should be included in the de-
cision method to smooth, and therefore attenuate, very time-
frequency localized high power contributions (which are con-
sidered unlikely to have been created by the human sound
production system) and prevent false ’speech present’ clas-
sifications. Depending on the attenuation rules used for each
of the two hypotheses a useful consequence of frequency-
smoothing would be larger solid time-frequency regions with
the same classification, e.g. if signal-to-noise ratio based at-
tenuation is used for H1(λ, k) and bins with H0(λ, k) is
set to zero then having large solid regions of the same deci-
sion would make the speech estimate less tonal and improve
perceptual quality since noise between pitch harmonic fre-
quencies in the voiced regions would be attenuated instead
of set to zero.
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