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Abstract

This paper suggests a clustering approach to broad pho-
netic classification of speech frames. Applications may
arise e.g. in acoustic-phonetic speech recognition. New
suitable clustering methods are introduced and applied to
three phonetic classification problems: voiced/unvoiced,
vowel/voiced consonant, and front vowel/back vowel. Clus-
tering results in optimised low-dimensional feature spaces
are compared against supervised classifications. Without
formal training, the clustering procedures are found to be
able to achieve class discrimination comparable to or bet-
ter than the well-trained classifier.

1. Introduction

Today’s dominant speech recognition techniques are based
on training hidden Markov models (HMMs) to represent
different speech units and then selecting the most likely
model sequence in recognition phase. Excellent results
may be achieved by this statistical pattern recognition ap-
proach under certain conditions. These conditions include
the assumption that the input data, the acoustic features, are
statistically similar to data used in training. In practice, the
recognition conditions may differ from the training condi-
tions with respect to e.g. speaker, speaking style, phonetic
contexts, environmental noise, and transmission channel.
These factors often lead to degrading performance in prac-
tical situations. The statistical HMM approach has also
been criticised for the fundamental assumption of indepen-
dence between observations. This is questionable due to
e.g. coarticulation and the fact that many speaker- and
environment-related characteristics are approximately con-
stant during a single utterance [1]. Intuitively, it seems a
reasonable assumption that the inter-category relations be-
tween the acoustic features of speech could be less variable
across utterances and more robust as a basis for recognition
than the absolute values of the features. Also, recognition
could be based on a tree of decisions, exploiting selected
optimal acoustic features at each stage, instead of a direct
multiclass classification relying on statistics. This kind of
approach is closely related to rule-based acoustic-phonetic
speech recognition [2]. This paper describes one of the first
steps in a research effort oriented towards maximally input-

data-driven recognition techniques that try to fix the diffi-
culties in the tree-based approach [2] by using clustering
instead of fixed-threshold classification. Because the en-
countered clustering problems are not easy, standard clus-
tering algorithms have to be supplemented and combined
in different ways in order to correctly detect the complex
shapes and temporal dependencies. A general multi-phase
clustering procedure with three variants has been devel-
oped. One of the variants is especially well suited for
speech signals in which the observations are generally not
temporally independent. These techniques have been ex-
perimentally applied to selected binary phonetic distinction
problems. The results show that finding a good low-order
feature subset within a predetermined feature set, leading
to a meaningful clustering solution, is often possible. The
discrimination performance of the unsupervised approach
with proper feature selection is shown to be able to match
that of supervised classification even though the latter uses
extensive training with high quality data. The clustering
procedures are introduced in section 2. The test material
and the features used in the experiments are described in
section 3. Section 4 contains the experimental results and
some feature selection suggestions for the classifications.

2. Clustering procedures

2.1. The fixed-centroid procedure

This is the basic clustering procedure on which the other
two procedures are based. It is called the fixed-centroid
clustering (FCC) method in this paper, since the initial
cluster prototypes are not moved. The first phase starts with
a large number of prototypes and iteratively smooths the
representation by eliminating the irrelevant ones. The sec-
ond phase combines the clusters from the first phase into
a desired number of final clusters. These phases are ex-
plained below and an example run is illustrated in Fig. 1.
The procedure has some apparent similarities with the bi-
nary morphology clustering approach [3]. Both techniques
first do an initial regular partitioning of the points into hy-
percubes, use some method to smooth out details, and fi-
nally aim to find connected components in the smoothed
representation of the data set. The algorithms are repre-
sented here in basic form, but in actual implementations
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Fig. 1: FCC applied to voiced/unvoiced discrimination
over an utterance.

� � �
, � � � � � � �

. (a) reference classi-
fication for comparison, (b) initial grid clustering, (c) con-
verged grid, (d) final clusters joined together by the single
linkage-Mahalanobis algorithm.

there are ways to simplify computation somewhat.

2.1.1. Initial smoothing in a hypergrid

This is the first stage in all clustering methods discussed
in this paper. It requires two parameters: grid density�
, with

� 	 

, and a smoothing parameter � � , which

is a nonzero ratio value,
� � � � �  . First, determine

the minimum and maximum values for each of the � fea-
tures over the � observations � � � � � � � � � � � � � � � � � � � � � ,

 � � � � . Split the interval between the minimum and
the maximum of each feature uniformly into

� �  in-
tervals of size � � � �

max�
� � � � � �

min�
� � � � � � � � � �  � to

obtain the boundary points � � � �
min�

� � � � �  � ! �  � � � ,
 � " � � ,  � ! � �

. The initial prototypes # $ are the
intersection points on a � -dimensional hypergrid given by
the values � � � . That is, # $ � � � � % $ & � � � % $ ' � � � � � � � % $ ( � � ,

 � ) � � � � � � ) � � �
, with the mapping between ) and the

sets
� ) � � � � � � ) � � determined by a suitable enumeration

method. The initial number of prototypes is thus * � � � .
The main algorithm is as follows:

1. Classify each observation point � � to the category
of its nearest neighbour prototype (using e.g. the Eu-
clidean distance)

2. For each prototype # $ , compute � $ as the number
of points assigned to its category

3. Sort the * prototypes # $ and the numbers � $ in
descending order according to the values � $

4. Determine the lowest index + for which� , - $ . � � $ � � � 	 � �
5. If + � * , discard the prototypes # - / � � � � # 0 ,
set * � + , and return to step 1; otherwise, exit.

The algorithm starts with an initial partition of observation
points into the

� � regions represented by the initial proto-
types. It iteratively discards the most irrelevant prototypes,
always keeping at least a fixed ratio � � of total points in
the regionswith remaining prototypes, until no more reduc-
tion in the number of prototypes is possible. This method
was originally developed to provide sensible initial values
for more sophisticated clustering methods. As an initialisa-
tion algorithm, the hypergrid method can provide both the
number of clusters and the initial prototypes. The number
of clusters may be implicitly controlled by the parameter

� � , since the algorithm will not converge as long as any
remaining cluster contains less than the ratio  � � � of the
total points. As a two-dimensional example, an initial grid
partition and the converged result are shown in Fig. 1 (b)
and (c), respectively.

2.1.2. Cluster joining by the Mahalanobis distance

Often in clustering, the number of clusters 1 is fixed in ad-
vance. This is the case also in the present paper because
we are interested in binary classification. Previous pro-
cessing may have produced just the desired number 1 of
clusters, in which case this final step is not needed. Oth-
erwise, if there are * 2 1 clusters, we do the following.
First, compute the mean vectors 3 4 �  � ) � * � for each
cluster and compute the covariance matrix 5 for the whole
data set. Next, compute pairwise squared Mahalanobis dis-
tances � $ � � � 3 4 � 3 6 � � 5 7 � � 3 4 � 3 6 � . Finally, use the
single linkage agglomerative hierarchical clustering algo-
rithm [4] with the � $ � to join the * clusters into 1 super-
clusters. Fig. 1(d) shows an example with * � 8

, 1 � 

.

2.2. The k-means procedure

Compared to the basic procedure in section 2.1, this
method has an additional intermediate cluster shaping
phase that requires two additional parameters: the num-
ber of iterations 9 and the cluster-elimination parameter

� � , � � � � �  . The cluster centroids are moved dur-
ing this phase by the familiar k-means algorithm [4]. The
initial centroids are provided by the hypergrid algorithm
(section 2.1.1) after which k-means is run for 9 iterations.
The present variant of k-means checks between each iter-
ation whether any prototype has less than the ratio � � of
all points classified to its category. Any such small clusters
are discarded before the next iteration. After 9 iterations,
if the number of remaining clusters * 2 1 , these clus-
ters are joined into 1 final clusters by the single linkage-
Mahalanobis algorithm (section 2.1.2). In the context of
this paper, this method is called the k-means clustering
(KMC) procedure, due to the intermediate phase.

2.3. The Markov-switching procedure

This procedure is otherwise similar to the k-means proce-
dure, but differs in the intermediate shaping phase. Here,
this phase is based on a method introduced in [5]. It uses
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inferences of the states of a suitably estimated HMM. It
requires the same additional parameters as the k-means
method, � and � � . This context-dependent clustering
method uses a normal density ergodic HMMwith � states
[2]. The model is specified by the parameter vector �
containing initial state probabilities � � , the state transition
probabilities � � � 	 � 
 � �  � 	 � � � � 	 � � , state-specific
mean vectors � � , and a covariance matrix � common to
all states. It was experimentally verified in [5] that by
proper initialisation of the HMM parameters, in particular
the mean vectors � � , iterative expectation-maximisation
(EM) reestimation tends to converge on a set of val-
ues that results in useful inferences of the model states� � . By assigning each observation � � in the sequence� 	 � � � � � � � � � � � � � � to the category of its inferred state,
we obtain a clustering solution in which the short-time con-
text dependency is taken into account. This procedure is
called theMarkov-switching clustering (MSC) method. An
example run, after grid initialisation, is shown in Fig. 2.

The common forward-backward implementation of EM
reestimation [2] has been modified in a couple of ways.
In computing state occupancy probabilities (of the type

� 
 � � 	 � � � � � � ) in the expectation (E) step of EM,
the present implementation does not use the conventional
forward-backward formulas relying on joint probabilities.
Formulas based on conditional probabilities are used in-
stead [6]. By comparisons done so far, this modification
has not been found to affect convergence significantly. A
more important modification is in the update of the state
transition probabilities in the maximisation (M) step of
each iteration. Specifically, they are updated here as

� � � 	 � � � �� � � � � 
 � � 	 � � � � � � � 
 � �  � 	 � � � � � �  � � � �� � � � 
 � � 	 � � � � � � (1)

instead of the commonly used formulas [2]. The modified
M step (1) uses only a posteriori information, with respect
to the current iteration’s E step, in updating the probabil-
ities, whereas the conventional formulas use also prior in-
formation from the previous iteration. It has been found
that this modification (also used in [5]) makes the reesti-
mation converge more rapidly on a desired solution. The
possibility of discarding states that seem to occur too rarely
has also been included. This is checked before eachM step.
When the rate of occupancy for any of the states goes below
the threshold � � , all parameters uniquely associated with
that state are discarded. Parameter reestimation in the M
step is then done for the reduced model with fewer states.

3. Speech material and features

The speech material consisted of 160 utterances of Finnish
sentences spoken by two male speakers, 80 sentences each.
It was recorded in quiet conditions with a high quality
equipment and sampled at 22050 Hz. A manual phonemic
segmentation and labelling was used for generating refer-
ence classifications in terms of the sound categories. The
14 features used in the experimental evaluation are sum-
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Fig. 2: MSC applied to front/back vowel discrimination
over an utterance. � 	 !

, � � 	 " � " #
. (a) reference clas-

sification, (b) initial HMM state inference clustering, (c)
after two iterations, (d) after four iterations (clusters joined
by the single linkage-Mahalanobis algorithm).

marised in Table 1. A Hamming window was used in en-
ergy and cepstrum computations. Prior to computing the
cepstral features, the cepstrumwas liftered by keeping only
the 2nd to the 25th samples. The autocorrelation method of
linear predictive coding (LPC) was used in computing LPC
features [2]. The features were computed in successive
frames of

$ #
ms with a frame shift interval of

!
ms. Some

features were median filtered with order 8, corresponding
to about 30 ms, to smooth rapid time variation. Feature
generation resulted in a total of 125603 feature vectors,
with each feature normalised to zero mean and unit vari-
ance. 26149 vectors labelled as silence and 2293 vectors
labelled as voiced stops (some of them actually unvoiced)
were eliminated. We were left with 97161 speech vectors
of which 82189 were labelled as voiced speech. These in-
cluded 61271 vectors representing vowels of which 33020
were front vowels.

Table 1: The features. Median filtering denoted by (m).
Abbreviation Description

ENH Log energy
E01 Log energy, 0-1 kHz
E12 Log energy, 1-2 kHz
E23 Log energy, 2-3 kHz
E34 Log energy, 3-4 kHz
DRA Log dynamic range
SFF Spectral flatness (m)
ZCR Zero-crossing rate
AC1 Unit-delay autocorrelation coefficient
MRE Log LPC residual energy (m)
NRE Normalised LPC residual energy
LP1 First LPC predictor coefficient (m)
CNE Euclidean norm of the cepstrum (m)
CCG Centre of gravity of the cepstrum (m)
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4. Experiments

The clustering procedures were tested with three binary
acoustic-phonetic classification problems: voiced / un-
voiced, vowel / voiced consonant, and front vowel / back
vowel. The parameters of the procedures were set to� � �

, � � � � � � �
, 	 � 


, and � � � � � � �
because these

values gave acceptable results. In each case, each one of
the 160 utterances was processed individually to find the
best at most three-dimensional feature subset. This was
done by an exhaustive search over the

 �� � � � � �� � � 
 � �
possibilities. With two ways to assign the two final clus-
ters to the two classes, the clusters were always mapped
to the classes so as to minimise the misclassification error
rate. Obviously, this was not an actual classification exper-
iment, since the misclassification rate was minimised sep-
arately for each speech input by always choosing the best
feature set and cluster assignment. Rather, different classi-
fiers were being compared and the best one chosen for each
utterance. The main purpose of this work was to test if the
clustering approach is feasible. To this end, the discrim-
ination scores obtained with the clustering methods were
compared against the classification scores of the k-nearest-
neighbour method [4], which is a powerful nonlinear su-
pervised classification method. The 7-nearest-neighbour
(7NN) classifier gave good results and was selected for
comparison. It used all the 14 features and was provided
with plenty of speaker-specific learning data: for each ut-
terance, 10000 vectors selected randomly from the relevant
sound categories in the same speaker’s other 79 utterances,
corresponding to more than 40 seconds of speech. The dis-
crimination percentage scores for the clustering methods
and the 7NN classifier are given in Tables 2-4. The “total”
score is the percentage of frames misclassified compared
to the manual labelling. The “balanced” score is based on
a balanced misclassification probability (resubstitution es-
timate), in which equal prior probabilities are assumed for
the classes. The most common features selected for each
problem using the KMC or MSC procedures are listed in
Table 5. Depending on the case,

� � �
to

� � �
of the chosen

feature sets had the allowed maximum of three elements.

Table 2: Error scores for voiced/unvoiced discrimination.
FCC KMC MSC 7NN

Total 4.0 3.2 3.4 2.9
Balanced 11.7 5.3 6.0 7.3
V as U 0.5 1.5 2.0 0.9
U as V 22.8 9.1 10.0 13.7

Speaker 1 total 3.5 2.6 2.4 1.9

Table 3: Error scores for vowel/consonant discrimination.
FCC KMC MSC 7NN

Total 19.1 18.6 16.2 17.7
Balanced 29.9 21.7 20.9 25.8
V as C 5.4 11.8 8.4 9.2
C as V 54.4 31.6 33.4 42.4

Speaker 1 total 18.0 16.8 14.7 16.4

Table 4: Error scores for front/back vowel discrimination.
FCC KMC MSC 7NN

Total 22.1 18.0 13.3 17.7
Balanced 27.0 19.7 14.6 17.9
F as B 6.9 10.7 8.1 16.0
B as F 47.2 28.8 21.0 19.7

Speaker 1 total 21.0 17.5 11.9 15.1

Table 5: Favoured features for the three problems.
Voiced/unvoiced ENH,CNE,E01,E34,MRE,E12
Vowel/consonant E34,CCG,DRA,ZCR,MRE,NRE
Front/back E23,E12,ENH,DRA,LP1,CCG

5. Conclusion

The unsupervised clustering procedures, even though lim-
ited to low-dimensional feature subspaces, achieved dis-
crimination scores comparable to those of a supervised
classifier trained with a fairly large amount of observa-
tions on all the available features. The best scores in the
more difficult problems were obtained with the Markov-
switching clustering procedure that incorporates temporal
context dependencies. The results suggest that the prob-
lem of training a classifier could, in some cases, perhaps be
converted to that of determining rules for selecting a feature
subset within a relatively small number of possibilities. If
this could be done automatically in a robust way, the depen-
dency on training data could potentially be reduced. How
to best determine the feature set and cluster assignment for
each classification and how to arrange classifiers in a tree
hierarchy are interesting topics for further research.
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