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ABSTRACT solutions of the finite linear equations [2].
Pecently, they have found their way in many

: . . applications such as multiuser detection in
Conjugate Gradient (CG) algorithm that ca piltojeband Code Division Multiple Access
be used when non-block processing or

sample-by-sample update is of interest an( CDMA) '[3,4] and mobile user tracking

compare its computational complexit WitS stems [5,6].
P P piexity n this paper, we review some of the

the conventional CG algorithm. We the : -
review the VLS| implementation of the CG'?ec:hmques that have been utilized for the

alaorithms. Furthermore. for the hardwarlmplementation of the CG algorithm. We the
img Iementétion of the sa{m le-bv-sample C oncentrate on the VLSI implementation of

pie Ample-by: P e algorithm. Special attention will be given
algorithm, a novel systolic array is propose

With the aid of this systolic architecture, the0 th'e systohc lmple.mentatK.)n of the CG
. ! : : algorithm. This paper is organized as follows.
time complexity of the algorithm will be

In Section Il, we study the Sample-by-Sample
reduced ta(N). CG algorithm and in Section Il we cqare
its computational complexity with the
conventional CG algorithm. In Section 1V, the
Amongst the adaptive algorithm, the Leas{LSI implementation of the algorithm is
Mean Squares (LMS) algorithm is the mogtiscussed. Concluding remarks are provided
widely used algorithm. Since its introductionin Section V.
due to its simplicity and low complexity the
LMS algorithm has been widely used [1]. 1l. CONJUGATEGRADIENT ALGORITHM
However, the convergence rate of the LM%
algorithm is rather slow and it depends on thé
eigenvalue spread of the autocorrelation Rw=b Q)
matrix of the inputs. In order to combat this
problem, recursive least-squares (RLSyhereR is a N-by-N known symmetric a
algorithm can be used. This is only possible gositive definite matrixp is a knownN-by-1
the expense of heavy computationalector, andw is a N-by-1 unknownvector.
complexity and matrix manipulations. In ordepjrect solution of (1), i.ew =R b requires
to reduce the computational complexity of the . . : -1 . :
RLS algorithm, fast RLS algorithms havdhatrix  Inversio R ! which IS
been proposed [1]. Unfortunately, fast RLgomputgtlonally EXpensive. 'In many
algorithms have a tendency to be numerical@Pp“,CE‘t'or.]S’ when  the d|m_e1n5|on of the
unstable. In order to improve the convergenégatrix R is large, or whenR™ should be
rate of the LMS algorithm and yet avoidcalculated periodically, the problem becomes
matrix inversions other algorithms such as tHg/€n more severe. . .
CG algorithm should be utilized. In order to solve (1) and yet avoid matrix

Conjugate gradient methods were firdfiversions iterative methods should be
developed in the early 1950s for iterativétilized. This could be achievedb

In this paper, we consider an efficien

I.  INTRODUCTION

onsider the linear system



minimizing the cost functionf(w) of the Ill. COMPUTATIONAL COMPLEXITY OF CG

following equation. As compared to the conventional CG

f(w) :EWTRW_WTb (2) algorithm, in the MCG algorithm,
2 . computations of the residual vectgn) and

For the minimization of (2) d|ffergnt methods,ctor B(n) are more complex and require a
such as the CG algorithm exist [7]. Thejigher number of vector inner products
Conjugate Gradient method combats thigparefore, in this section the computational
problem by using a set of linearly independephpjexities of the MCG algorithm and the
vectorsp(n) that are conjugate gradient with,qnyentional CG also referred to as the Block
respect tR. Althqugh different variety of_the Conjugate Gradient (BCG) [7] algorithms are
CG algorithm exist [7], they are not suitablgy,gied and compared. In these calculations,
for the non-block processing or sample-bysne givision has the same complexity as one
sample update. , _ multiplication. Note that for estimating the
In [8], a Conjugate Gradient algorithm wag,mpjexities, we have only considered the
presented that is suitable for such applicationgymper of multiplications. This is due to the
This algorithm also known as the Modifiedact that multiplications are more complex

CG (MCG) is presented in Table I. than additions [9]. The results are shown in
Table II.
TABLE | TABLE Il
SAMPLE-BY-SAMPLE CG ALGORITHM COMPARISON OF COMPUTATIONAL

COMPLEXITIES OF DIFFERENTCG ALGORITHMS

Set initial conditions:

w(0)=0,9(0)=b(0), p(0)=9(0) Algorithm Number of multiplications
forn=1,2, ... BCG K(N?+5N +2)-2N -1
v(n) =R(n-1p(n-1) MCG N2 +10N + 3

p'(n-1)g(n-1)

a(n)=n— K: Maximum number of iterations for a block
P’ (n=1)v(n)
w(n) =w(n-1)+a(np(n-1) When calculating the  computational
g(n) = Ag(n-=1) —a(n)v(n) +x(n)(d(n) complexity of the BCG, one should note that
—xT(Mw(n-1)) in the last iteration for updating the filter
: coefficients the only necessary computation
B(n) = (g(nT) —g(n-1)) g(n) required is the calculation of the step sizet
g (n-1)g(n-1) is clear that the computational complexity of
p(n) =g(n) + B(n)p(n-1) the BCG depends orK, the number of

iterations. Thus, for largd the computational
complexity of the BCG isK times of the
In this algorithm a(n) is the step size whichcomplexity of the sample-by-sample CG
minimizes the cost function along the searcligorithm.

directionp(n) and it is used in the update of

the weight vectow(n), g(n) is the residual of  |V. SysToOLIC IMPLEMENTATION OF THE

the function and points to the direction of the ALGORITHM

steepest descent. The new weight veat(m) . . . , .
is computed as a linear combination of thid this section, we discuss the implementation

previous weight vector and the searclf theé MCG algorithm and focus on

direction. Factorf(n) ensures that theR- developing an efficient very large scale

orthogonality is preserved between the newtggratlon (VLSI). array processor that.ls
search directions. suitable for real time applications. For this

purpose, we design a systolic array that targets




the most computationally intensive block ohot be reliable and may not feasible for
the MCG algorithm practical applications. Furthermore, the above
mentioned architecture is not suitable for the
A. Review of the Implementation TechniquesICG algorithm of Table I.
In many applications, in order to meetthe _ _
demand for high computing rates and tB- Systolic Implementation
achieve acceptable execution speed the In this section, we design a novel systolic
conventional serial implementation methodarchitecture that reduces the time complexity
are not sufficient. Thus, parallel architecturesf the MCG algorithm toO(M). As discussed
should be utilized. For matrix computationsn the previous section, due to the serial nature
needed in the MCG algorithm of Table Ipof the algorithm, there is a very low degree of
several classes of parallel architectures suphrallelism in the algorithm. Furthermore, due
as multiprocessors, systolic-type arraydp the iterative nature of the algorithm and
vector computers and array computers havkfferent resetting schemes required 6y
been proposed [10]. direct mapping of the MCG algorithm to
Although many of these parallel architecture&SIC is not trivial. Our systolic architecture
have demonstrated their effectiveness fairgets the matrix-vector and vector-vector
executing matrix-vector computations, theproducts needed in the calculation of the step
may not be suitable for VLS| due to the&ize a and 8. Consider the calculation of the
broadcasting or complex interconnectiogtep sizex:
network. These drawbacks led to the T
introduction of application- ifi = p_(n-Dg(n-1)
pplication-specific  a(n) =n— 3)
architectures and in particular systolic arrays, p (n-1R(n-1)p(n-1)
which are natural for matrix operations. Thegqr simplicity, we introduce the new variable
match the fine granularity of parallelis v(n) as follows:
available in the computations and have very
low overhead in communication and v(n) =R(n)p(n) (4)
synchronization. In addition, the regulab
nature of systolic-type arrays meets the. ue to the sampl_e—by—sample upd.ate sche_gme
requirements for effective use of vLsih the MQG "?"go”thm' the correlation matrix
[10,11]. R(n) varies in every sample. Howevgr, in
Jnany applications such as user tracking [5]
hen calculating the weight vectors fod

In the CG algorithm, the most computation
intensive operations are matrix-vector anwd. idual R ins th
inner vector products. Although, for thes ividual sourcesR(n) remains the same.

operations a variety of systolic architecture, hertgfore t;1n suchacasegil fgm Cglr)segutéve
exists, the main problem is to map the entifgerations the sam () Wil be utitize [. ]
s a result, for the systolic implementation of

algorithm onto a suitable and practical VLS . L
ar%hitecture. In the MCG howe\r/Jer, due to th@) a 2D array implementation is adopted. The

serial nature of the algorithm, there is a very/€ments of th&(m=ry(n) (ij =1, ...,N) are
low degree of parallelism. This is also the ca erefore preloaded into this array processor.

when dealing with the BCG algorithm ow, consider the following vector-vector
In [12], systolic implementation 'of themuItipIications that are needed inthe MCG

Preconditioned Block Conjugate Gradier!90rithm.

algorithm (PCG) was discussed. In their work,

they utilized the result in [13] and therefore, ~ P9(N—1)=p'(n-DHg(n-1) (5)
proposed a two-dimensional  systolic .
architecture for the PCG algorithm. The PCG pv(n) =p (n-1)v(n) (6)

algorithm of [13] has a more parallel nature=or the realization of (5) and (6), a linear
However, due to the rounding errors thgray is selected. For synchronization
algorithm of [13] is unstable. Therefore, iyrposes, the linear array is placed below the
practice the systolic architecture in [12] capp array. Fig. 1 illustrates the proposed



systolic array wheN = 4. In Fig. 1b, the cell %
function of each PE is illustrated. % > B
Furthermore, this architecture utilizes the 00% 000 000 0
availability of the residual vectog(n) and ul ul ul ul
performs the following vector inner product
needed in the calculation ff

P1—> —>

W e

P2 0—> —> —» >

gg(n-1) =g’ (n-Ng(n-1) 7)

From Table I, it can be seen that for the
calculation of the residual vectag(n), the ul ul ul ul
vector v(n) of (4) is needed. This canbe .,
achieved in two ways. One way is that keep

the elements af(n) and after every 2N step ul ul ul ul
transfer them sequentially from the PEZﬁooo—»
Another way is to slightly modify the PE2 by e e g
adding an out port. Fig. 2 illustrates an l ul ul
alternative scheme for the PE2. 0

The total number of PEs required in this §

systolic architecture isN*+N. In order to

calculate the throughput of the systolic array, Vin P2nGin v v, +pl [0
we assume that one time step of the global out n Pl
clock corresponds to the processing time Your < Gin

required for each PE. For the initialization of P —>| PEL——plu pl,, « pl,
PE1s,N time steps are needed. Thus, the total £
VoutPZoutJout

computation time required by the array I8 3 P20 = P2, 117 ]

steps. Fig. 3 illustrates the flow of data in the PZoy — PL, ifi=]
proposed systolic architecture for different Ver P G
time steps. PVour < PVir + Py LV,
g;" M pes PV PYoye <= PYin + Pin Ijgin
V. CONCLUSIONS n PGout
9Gn 9%« 9% < 99 + Yin |:gin

In this paper, we studied an efficient
Conjugate Gradient algorithm that can be
utilized when non-block processing or

sample-by-sample update is of interest. We
then compared the computational complexity

Fig. 1. a) Systolic architecture whix4
b) Input-output ports and cell functions

of this algorithm with the conventional CG Vin Pin Gin PV, < PV, *+ P, Vi,
algorithm also known as BCG. Furthermore,

for the hardware implementation of the g\; ¥ pes 3 S\g;t PO = PG *+ Pin L0,
sample-by-sample CG algorithm, a novelgg. 9% 9%u < 9% * G LO;,
systolic array was proposed. With the aid of V.o ooV

this systolic architecture, the time complexity Vou o "

of the CG algorithm will be reduced ©(N).  Fig. 2. Input-output ports and cell functions of
Future research should be directed towards the modified PE2

mapping the system into a fixed number of
processors wheN is large.



(5]

[7]

Fig. 3. lllustration of the data movement for
each computation step (8]
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