
SYSTOLIC IMPLEMENTATION OF SAMPLE-BY-SAMPLE
CONJUGATE GRADIENT ALGORITHM

Ramin Baghaie
Helsinki University of Technolog

Laboratory of Telecommunications Technolog
P.O. Box 3000

02015 HUT, Finland

ABSTRACT

In this paper, we consider an efficient
Conjugate Gradient (CG) algorithm that can
be used when non-block processing or
sample-by-sample update is of interest and
compare its computational complexity with
the conventional CG algorithm. We then
review the VLSI implementation of the CG
algorithms. Furthermore, for the hardware
implementation of the sample-by-sample CG
algorithm, a novel systolic array is proposed.
With the aid of this systolic architecture, the
time complexity of the algorithm will be
reduced to O(N).

I. INTRODUCTION

Amongst the adaptive algorithm, the Least
Mean Squares (LMS) algorithm is the most
widely used algorithm. Since its introduction,
due to its simplicity and low complexity the
LMS algorithm has been widely used [1].
However, the convergence rate of the LMS
algorithm is rather slow and it depends on the
eigenvalue spread of the autocorrelation
matrix of the inputs. In order to combat this
problem, recursive least-squares (RLS)
algorithm can be used. This is only possible at
the expense of heavy computational
complexity and matrix manipulations. In order
to reduce the computational complexity of the
RLS algorithm, fast RLS algorithms have
been proposed [1]. Unfortunately, fast RLS
algorithms have a tendency to be numerically
unstable. In order to improve the convergence
rate of the LMS algorithm and yet avoid
matrix inversions other algorithms such as the
CG algorithm should be utilized.
Conjugate gradient methods were first
developed in the early 1950s for iterative

solutions of the finite linear equations [2].
Recently, they have found their way in many
applications such as multiuser detection in
Wideband Code Division Multiple Access
(WCDMA) [3,4] and mobile user tracking
systems [5,6].
In this paper, we review some of the
techniques that have been utilized for the
implementation of the CG algorithm. We the
concentrate on the VLSI implementation of
the algorithm. Special attention will be given
to the systolic implementation of the CG
algorithm. This paper is organized as follows.
In Section II, we study the Sample-by-Sample
CG algorithm and in Section III we compare
its computational complexity with the
conventional CG algorithm. In Section IV, the
VLSI implementation of the algorithm is
discussed. Concluding remarks are provided
in Section V.

II. CONJUGATE GRADIENT ALGORITHM

Consider the linear system

bRw = (1)

where R is a N-by-N known symmetric a
positive definite matrix, b is a known N-by-1
vector, and w is a N-by-1 unknown vector.
Direct solution of (1), i.e., bRw 1−= requires

matrix inversio R−1 , which is
computationally expensive. In many
applications, when the dimension of the
matrix R is large, or when 1−R should be
calculated periodically, the problem becomes
even more severe.
In order to solve (1) and yet avoid matrix
inversions iterative methods should be
utilized. This could be achieved b

minimizing the cost function f(w) of the
following equation.

bwRwww TT

2

1
)(−=f (2)

For the minimization of (2) different methods
such as the CG algorithm exist [7]. The
Conjugate Gradient method combats this
problem by using a set of linearly independent
vectors p(n) that are conjugate gradient with
respect to R. Although different variety of the
CG algorithm exist [7], they are not suitable
for the non-block processing or sample-by-
sample update.
In [8], a Conjugate Gradient algorithm was
presented that is suitable for such applications.
This algorithm also known as the Modified
CG (MCG) is presented in Table I.

TABLE I
SAMPLE-BY-SAMPLE CG ALGORITHM

Set initial conditions:

0w =(0) , (0)(0) bg = , (0)(0) gp =

for n = 1, 2, …

1)()1()(−−= nnn pRv

)(1)(

1)()1(
)(

T

T

nn

nn
n

vp
gp

−
−−= ηα

)1()()1()(−+−= nnnn pww α

1))()(

)(()()()(1)()(
T −−

+−−=

nn

ndnnnnn

wx

xvgg αλ

1)(1)(

)(1))()((
)(

T

T

−−
−−=

nn

nnn
n

gg
gggβ

1)-()(+)()(nnnn pgp β=

In this algorithm α(n) is the step size which
minimizes the cost function along the search
direction p(n) and it is used in the update of
the weight vector w(n), g(n) is the residual of
the function and points to the direction of the
steepest descent. The new weight vector w(n)
is computed as a linear combination of the
previous weight vector and the search
direction. Factor β(n) ensures that the R-
orthogonality is preserved between the new
search directions.

III. COMPUTATIONAL COMPLEXITY OF CG

As compared to the conventional CG
algorithm, in the MCG algorithm,
computations of the residual vector g(n) and
factor β(n) are more complex and require a
higher number of vector inner products
Therefore, in this section the computational
complexities of the MCG algorithm and the
conventional CG also referred to as the Block
Conjugate Gradient (BCG) [7] algorithms are
studied and compared. In these calculations,
one division has the same complexity as one
multiplication. Note that for estimating the
complexities, we have only considered the
number of multiplications. This is due to the
fact that multiplications are more complex
than additions [9]. The results are shown in
Table II.

TABLE II
COMPARISON OF COMPUTATIONAL

COMPLEXITIES OF DIFFERENT CG ALGORITHMS

Algorithm Number of multiplications

BCG 12)25(2 −−++ NNNK

MCG 3102 ++ NN

K: Maximum number of iterations for a block

When calculating the computational
complexity of the BCG, one should note that
in the last iteration for updating the filter
coefficients the only necessary computation
required is the calculation of the step size α. It
is clear that the computational complexity of
the BCG depends on K, the number of
iterations. Thus, for large N the computational
complexity of the BCG is K times of the
complexity of the sample-by-sample CG
algorithm.

IV. SYSTOLIC IMPLEMENTATION OF THE

ALGORITHM

In this section, we discuss the implementation
of the MCG algorithm and focus on
developing an efficient very large scale
integration (VLSI) array processor that is
suitable for real time applications. For this
purpose, we design a systolic array that targets

the most computationally intensive block of
the MCG algorithm

A. Review of the Implementation Techniques

In many applications, in order to meet the
demand for high computing rates and to
achieve acceptable execution speed the
conventional serial implementation methods
are not sufficient. Thus, parallel architectures
should be utilized. For matrix computations
needed in the MCG algorithm of Table I,
several classes of parallel architectures such
as multiprocessors, systolic-type arrays,
vector computers and array computers have
been proposed [10].
Although many of these parallel architectures
have demonstrated their effectiveness for
executing matrix-vector computations, they
may not be suitable for VLSI due to the
broadcasting or complex interconnection
network. These drawbacks led to the
introduction of application-specific
architectures and in particular systolic arrays,
which are natural for matrix operations. They
match the fine granularity of parallelis
available in the computations and have very
low overhead in communication and
synchronization. In addition, the regular
nature of systolic-type arrays meets the
requirements for effective use of VLSI
[10,11].
In the CG algorithm, the most computationa
intensive operations are matrix-vector and
inner vector products. Although, for these
operations a variety of systolic architectures
exists, the main problem is to map the entire
algorithm onto a suitable and practical VLSI
architecture. In the MCG however, due to the
serial nature of the algorithm, there is a very
low degree of parallelism. This is also the case
when dealing with the BCG algorithm.
In [12], systolic implementation of the
Preconditioned Block Conjugate Gradient
algorithm (PCG) was discussed. In their work,
they utilized the result in [13] and therefore,
proposed a two-dimensional systolic
architecture for the PCG algorithm. The PCG
algorithm of [13] has a more parallel nature.
However, due to the rounding errors the
algorithm of [13] is unstable. Therefore, in
practice the systolic architecture in [12] can

not be reliable and may not feasible for
practical applications. Furthermore, the above
mentioned architecture is not suitable for the
MCG algorithm of Table I.

B. Systolic Implementation

In this section, we design a novel systolic
architecture that reduces the time complexity
of the MCG algorithm to O(M). As discussed
in the previous section, due to the serial nature
of the algorithm, there is a very low degree of
parallelism in the algorithm. Furthermore, due
to the iterative nature of the algorithm and
different resetting schemes required for β,
direct mapping of the MCG algorithm to
ASIC is not trivial. Our systolic architecture
targets the matrix-vector and vector-vector
products needed in the calculation of the step
size α and β. Consider the calculation of the
step size α:

1)()1(1)(

1)()1(
)(

T

T

−−−
−−=

nnn

nn
n

pRp
gpηα (3)

For simplicity, we introduce the new variable
v(n) as follows:

)()()(nnn pRv = (4)

Due to the sample-by-sample update scheme
in the MCG algorithm, the correlation matrix
R(n) varies in every sample. However, in
many applications such as user tracking [5]
when calculating the weight vectors for M
individual sources, R(n) remains the same.
Therefore in such cases, for M consecutive
iterations the same R(n) will be utilized [6].
As a result, for the systolic implementation of
(3) a 2D array implementation is adopted. The
elements of the R(n)= rij(n) (i,j = 1, …, N) are
therefore preloaded into this array processor.
Now, consider the following vector-vector
multiplications that are needed in the MCG
algorithm.

1)()1()1(T −−=− nnn gppg (5)

)(1)()(T nnn vppv −= (6)

For the realization of (5) and (6), a linear
array is selected. For synchronization
purposes, the linear array is placed below the
2D array. Fig. 1 illustrates the proposed

systolic array when N = 4. In Fig. 1b, the cell
function of each PE is illustrated.
Furthermore, this architecture utilizes the
availability of the residual vector g(n) and
performs the following vector inner product
needed in the calculation of β.

)1()1()1(T −−=− nnn gggg (7)

From Table I, it can be seen that for the
calculation of the residual vector g(n), the
vector v(n) of (4) is needed. This can be
achieved in two ways. One way is that keep
the elements of v(n) and after every 2N step
transfer them sequentially from the PE2.
Another way is to slightly modify the PE2 by
adding an out port. Fig. 2 illustrates an
alternative scheme for the PE2.
The total number of PEs required in this
systolic architecture is N2+N. In order to
calculate the throughput of the systolic array,
we assume that one time step of the global
clock corresponds to the processing time
required for each PE. For the initialization of
PE1s, N time steps are needed. Thus, the total
computation time required by the array is 3N
steps. Fig. 3 illustrates the flow of data in the
proposed systolic architecture for different
time steps.

V. CONCLUSIONS

In this paper, we studied an efficient
Conjugate Gradient algorithm that can be
utilized when non-block processing or
sample-by-sample update is of interest. We
then compared the computational complexity
of this algorithm with the conventional CG
algorithm also known as BCG. Furthermore,
for the hardware implementation of the
sample-by-sample CG algorithm, a novel
systolic array was proposed. With the aid of
this systolic architecture, the time complexity
of the CG algorithm will be reduced to O(N).
Future research should be directed towards
mapping the system into a fixed number of
processors when N is large.

0
0
0

0 00 0 0 00 0

g3

g4

g1

g2

0
0
0

0
0

0

p1

p2

p3

0

0 0

p40 00

vin p2ingin

voutp2outgout

p1i p1outPE1

ijininout rpvv ⋅+← 1

inout gg ←

inout pp 11 ←
jiifpp inout ≠← 22

jiifpp inout =← 12

ggout

pvout

pgout

ggin

pvin

pgin

vin pin gin

PE2

inininout vppvpv ⋅+←

inininout gppgpg ⋅+←

inininout gggggg ⋅+←

Fig. 1. a) Systolic architecture when N=4
b) Input-output ports and cell functions

ggout

pvout

pgout

ggin

pvin

pgin

vin pin gin

vout

PE3

inininout vppvpv ⋅+←

inininout gppgpg ⋅+←

inininout gggggg ⋅+←

inout vv ←

Fig. 2. Input-output ports and cell functions of
the modified PE2

n =
 1

n =
 2

n =
 3

n =
 4

n =
 5

n =
 6

n =
 7

n =
 2N

Fig. 3. Illustration of the data movement for
each computation step

ACKNOWLEDGEMENTS

This work is part of a research project of the
Institute of Radio Communication (IRC)
funded by Technology Development Center
(TEKES), NOKIA Research Center, Sonera
Ltd. and the Helsinki Telephone Company.

REFERENCES

[1] P. Diniz, Adaptive Filtering, Algorithms
and Practical Implementation. Kluwer
Academic Publishers, 1997.

[2] M.R. Hestenes and E. Stiefel, "Method
of conjugate gradients for solving linear
systems," Journal of Research of the
National Bureau of Standards, vol. 49,
no. 6, pp. 409-436, Dec. 1952.

[3] M. Juntti, B. Aazhang, and J. Lilleberg,
"Iterative implementation of linear
multiuser detection for dynamic
asynchronous CDMA systems," IEEE
Transactions on Communications, vol.
46, no. 4, pp. 503-508, Apr. 1998.

[4] S. Das, J.R. Cavallaro, and B. Aazhang,
"Computationally efficient multiuser
detectors," in Proceedings IEEE
International Symposium on Personal,
Indoor and Mobile Radio
Communications, PIMRC'97, Helsinki,
Finland, vol. 1, pp. 62-67, September
1997.

[5] P. Karttunen and R. Baghaie,
"Conjugate Gradient Based Signal
Subspace Mobile User Tracking," in
Proceedings IEEE Vehicular Technology
Conference, VTC'99 Spring, Houston,
Texas, USA, May 1999.

[6] Z. Fu and E. Dowling, "Conjugate
gradient projection subspace tracking,
IEEE Transactions on Signal
Processing, vol. 45, no. 6, pp. 1664-
1668, June 1997.

[7] G.H. Golub and C.F. Van Loan, Matrix
computations. The Johns Hopkins
University Press, 1989.

[8] S.P. Chang and A.W. Willson,
"Adaptive filtering using modified
conjugate gradient," in Proceedings 38th
Midwest Symposium on Circuits and
Systems, Rio de Janeiro, Brazil, pp. 243-
246, August 1995.

[9] T. Callaway and E. Swartzlander,
"Optimizing arithmetic for signal
processing," in Proceedings IEEE
Workshop on VLSI Signal Processing, V,
Napa Valley, California, pp. 91-100,
October 1992.

[10] J.H. Moreno and T. Lang, "Matrix
computations on systolic-type meshes,
IEEE Computer, pp. 32-51, Apr. 1993.

[11] S.Y. Kung, VLSI Array Processors.
Englewood Cliffs, New Jersey: Prentice
Hall, 1988.

[12] J. Tasic, M. Gusev, and D.J. Evans,
"Systolic implementation of
preconditioned conjugate gradient
method in adaptive transversal filters,
Parallel Computing, vol. 18, no. 9, pp.
1053-1065, Sept. 1992.

[13] Y. Saad, "Practical use of polynomial
preconditionings for the conjugate
gradient method," SIAM Journal of
Scientific Statistical computing, vol. 6,
no. 4, pp. 865-881, Oct. 1985.

