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ABSTRACT

Partial-update adaptive filtering algorithms only update part of the
filter coefficients at each time instant, leading to reduced compu-
tational complexity as compared with their conventional counter-
parts. In this paper, the ideas of the partial-update NLMS-type al-
gorithms found in the literature are extended to the framework of
set-membership filtering, from which data-selective NLMS type
of algorithms with partial update are derived. The new algorithms
combine data-selective updating from set-membership filtering
with the reduced computational complexity from partial updating.
Simulation results verify the good performance of the new algo-
rithms in terms of convergence speed, final misadjustment, and
reduced computational complexity.

1. INTRODUCTION

With the choice of algorithms ranging from the simple LMS al-
gorithm to the more complex RLS algorithm, tradeoffs between
performance criteria such as, e.g., computational complexity and
convergence rate have to be made. In certain applications, the
use of the RLS algorithm is prohibitive due to the high compu-
tational complexity and in such cases we must resort to simpler
algorithms. As an example, consider an acoustic echo cancella-
tion application where the adaptive filter might require thousands
of coefficients [1]. For this large number of filter coefficients, it is
possible that with the given resources even the implementation of
low computational-complexity algorithms, such as the NLMS al-
gorithm, could be impractical. Some means of reducing the com-
putational complexity even further are to apply quantized-error
algorithms like, for example, the sign-error and sign-data algo-
rithms [2]. Alternatively, instead of reducing the filter order, or
applying quantized-error algorithms, one may choose to update
only part of the filter vector at each time instant. Such algorithms,
referred to as partial-update algorithms, can reduce the computa-
tional complexity per iteration while performing close to their full
update counterparts in terms of convergence rate and final MSE.
In the literature one can find several variants of the LMS and the
NLMS algorithms with partial updates, see, e.g., [1], [3]–[5].

Another efficient approach to reduce the computational com-
plexity is to employ set-membership filtering (SMF) algorithms
[6]. Algorithms derived within the framework of SMF employ a
deterministic objective function related to a bounded error con-
straint on the filter output. The resulting adaptation algorithms
are data selective, which in turn can reduce considerably the av-
erage computational complexity. Data-selective algorithms with
low computational complexity per update are the set-membership
NLMS (SM-NLMS) [6], the set-membership binormalized data-

reusing (SM-BNDRLMS) [7], and the set-membership affine pro-
jection (SM-AP) [8] algorithms.

The objective of this paper is to propose a framework which al-
lows the combination of set-membership normalized data-reusing
algorithms with partial-update algorithms. The resulting
algorithms benefit from the data-selective updating related to the
set-membership framework reducing the average computational
complexity, and also from the reduced computational complexity
obtained with the partial update of the coefficient vector.

2. SET-MEMBERSHIP FILTERING

In set-membership filtering (SMF), the filter � is designed to
achieve a specified bound on the magnitude of the output error.
Assuming a sequence of input vectors

���	��

���� � , a desired-signal
sequence

������

���� � , we can write the sequence of output errors������
����� � as,

����������� � T ��� (1)

where
���

and ����� � , and
���

and
��� �!� . For a properly chosen

bound " on the estimation error, there are several valid estimates
of � . Let # � denote the set containing all vectors � for which
the associated output error at time instant $ is upper bounded in
magnitude by " . In other words,

# �%�&� ����� �('*) ����� � T �+� )-, " 
 (2)

The set # � is referred to as the constraint set and its boundaries are
hyperplanes. Finally, define the feasibility set . � to be the inter-
section of the constraint sets over the time instants / �10�2�343�352 $ ,
i.e.,

. �6�
�
7
8 � � # 8 (3)

The idea of set-membership adaptive recursion techniques
(SMART) is to adapt in a way as to remain within the feasibil-
ity set. The set-membership NLMS (SM-NLMS) algorithm uses
the information provided by constraint set # � to construct a set of
feasible solutions.

3. THE SET-MEMBERSHIP PARTIAL-UPDATE NLMS
ALGORITHM

In this section we extend the idea of partial update to the frame-
work of SMF. The goal is to combine the advantages of SMF and
partial update to obtain an algorithm with sparse updating and low



computational complexity per update. Let the � coefficients up-
dated at time instant $ be specified by an index set ����� $�� �� /	�
� $�� 2 2�3�3�3 2 / �
� � � $�� 
 with

� /�� 
 �
� �� � � taken from the set����263�3�3 2�� 

. Note that � � � $�� depends on the time instant $ .

As a consequence, the � coefficients to be updated can change be-
tween consecutive time instants. A question that naturally arises
is “Which � coefficients should be updated?”. The answer can
be related to the optimization criterion chosen for the algorithm
derivation. Our approach is to seek a coefficient vector update
that minimizes the Euclidean distance � � ��� � � � � � � subject to
the constraint that � ��� � � # � with the additional constraint of
updating only � coefficients. This means that if � � � # � , the
minimum distance is zero and no update is required. However,
when � ���� # � , the new update is obtained as the solution to
the optimization problem in Equation (4) below. Introduce the di-
agonal matrix �������! #" having � ones in the positions indicated
by � �%$ ��& and zeros elsewhere. Defining the complementary ma-
trix '� �����( )" ��* � � �����! #" will give '� �����( )" � ��� � � '� �����! #" � �
when only � coefficients are updated. With these notations, the
optimization criterion for the partial update can be formulated as

� ��� � �,+.-!/0 � � � � � � � subject to:
����� ��1 � � �32 �
'� � � $ ��& � � � � � � �54 (4)

where
2��

is a parameter that determines a point within the con-
straint set # � , therefore, ) 2�� ) , " . Herein

2��
is chosen such that

the updated vector belongs to the closest bounding hyperplane in# � , i.e.,
2 �6� " sign � ��� � . Applying the method of Lagrange mul-

tipliers gives the recursive updating rule

� ��� � � � �7698 � ��� � � � $ ��& ����:� � � $ ��& ��� � � (5)

where
8 �

is a data dependent step size given by8 � �<; 0 � ">= ) ��� ) if ) ��� )@? "�
otherwise

(6)

We see from (5) that only the coefficients of � � indicated by the
index set ����� $�� are updated, whereas the remaining coefficients
are not changed. As with the PU-NLMS algorithm [5], we can
conclude through substitution of (5) in (4) that the index set ���A� $��
minimizing (4) is the set associated with the � coefficients in the
input vector

�+�
having the largest norm. The algorithm is similar

in form to the PU-NLMS algorithm, but not in philosophy or in
derivation.

A graphical view of the SM-PU-NLMS algorithm update is
given in Figure 1 for the case of

�B6�0%�DC
filter coefficients and� � 0

coefficient in the partial update. In the figure, the com-
ponent E
F is the element of maximum magnitude in

���
, and the

matrix �����
G:�! #" which decides the direction of update � ��� � in � F
is, therefore, in this example given by �����
GH�! #" � diag � ��� 0 � . The

solution �JI in Figure 1 is the solution of the SM-NLMS algo-
rithm obtained by an orthogonal projection of � � onto the closest
boundary of # � . The angle K shown in Figure 1 denotes the angle
between the direction of update between � ���
G:�! #" � � and the input

vector
���

. The angle K in � � is given by L�M�N
K �PO	QSR � �( )"UT  OO T  O . In
order to take the solution of the SM-PU-NLMS algorithm after the
update closer to the orthogonal projection than the solution before
the update, consider the bound given by the following lemma:
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Fig. 1. Geometric illustration of an update in � F using � � 0
coefficient in the partial update, and with ) E F )
? ) E � )
? ) E � ) , the
direction of the update is along the vector g �h� E F#i 1 forming an
angle K with the input vector
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Fig. 2. General projection solution.

Lemma: � � ��� � � � I � , � � I � � � � for
O	Q R � �! )" T  OO T  O r �s � .

Proof: The orthogonal projection � I � � �t6u8	�wv  T  O T  O	x [6] where8 �
is the data-dependent step size given by Equation (6). Conse-

quently, � � I � � � � � �zy x v x  O T  O x . Since � �:� � and � I lie in the

same hyperplane, we have � � ��� � � � I �|{}� � I � � � � . There-
fore, � � ��� � � � I � � � � � ��� � � � � � � � � � I � � � � � �y x  v x  OnQ R � �( )" T  O x � y x  v x  O T  O x . For � � ��� � � � I � � , � � I � � � � � to

hold,
O	Q R � �( )" T  O xO T  O	x r �� is required.

The lemma tells us that if the instantaneous power in the input vec-
tor corresponding to the partial update is larger than half of the to-
tal instantaneous power, the SM-PU-NLMS update will be closer
to the orthogonal solution than the current solution. For white
input signals we can make the approximations �:� � � $ �:& ��� � � �~ �� � and � ��� � � � ~ �� � ��6 0 � for large

��6 0
and � . Using these

approximations a lower bound on the number of coefficients in the
partial update is � ? � ��6�0 ��=�� .

Unlike the PU-NLMS algorithm, the solution to the SM-PU-
NLMS algorithm is required to belong to the constraint set; the
introduction of a step size to prevent divergence is outside the
framework of SMF. On the other hand, stability problems for the
SM-PU-NLMS algorithm may arise when � is small, and as a con-
sequence, K is increased. In order to address this problem, consider
the following update strategy.
Proposition 1: Increase the number of filter coefficients in the par-
tial update vector until the relation �:� � � $ ��& �+� � � r 8	� � �+� � � is
true.

Proposition 1 gives a solution where the number of coeffi-
cients in the update varies with time. In case of equality we have
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Fig. 3. Projection solution with temporary expansion of the con-
straint set # � using a new threshold " �

.
Table 1. SM-PU-NLMS algorithm, with � , � ���H� .

for k = 1:K
y = V ��� ]
e = d - y + n
P = P + x(k)ˆ2 - x(k-N)ˆ2
if abs(e)

�
gamma

[ � , 	 ] = sort(abs(
]

))	 = 	 (N:-1:1)
l = 0
p = 0
alpha = 1 - gamma/abs(e)
b = alpha

�
P

while p 
 b & l 
 Lmax
l = l + 1
p = p +

]
( 	 (l))

end;
if p 
 b

c = 1 - p/P
alpha = 1 - c

end;�
= � ( 	 (1:l))

t =
� � � �V ( 	 (1:l)) = V ( 	 (1:l)) + alpha

�
e/t
� ]

( 	 (1:l))
end;

end;

�#� � � $ ��& �+� � � � 8 � � ��� � � , and the update can be viewed as the
projection of the zero a posteriori solution onto � � � $ �:& �+� , as il-
lustrated in Figure 2. No upper bound on � is guaranteed, and
the proposed strategy would most likely result in an � close to� 6 0

during the initial adaptation. This is clearly not desir-
able for the case of partial-update algorithms, where in many cases�
���D� �B6�0 � is required. Therefore, we consider the following
alternative proposition:
Proposition 2: Increase the number of filter coefficients in the par-
tial update vector until the relation �#� � � $ ��& �+� � � r 8 � � ��� � � is
true or � � � ���H� . If � � � ���H� , increase the threshold " tem-

porarily at the $ th iteration to " ��� O T  O x � O	Q R � �( )" T  O xO T  O x ) ��� ) .
As illustrated in Figure 3, Proposition 2 will temporarily expand
the constraint set in order to provide a feasible solution if the re-
quired number of coefficients to fulfill Proposition 1 exceeds a pre-
defined maximum number of coefficients � ���H� set at the design
stage. Tables 1 and 2 show two different versions of the SM-PU-
NLMS algorithm. The version in Table 1 implements Proposition
2 and the number of coefficients are allowed to vary freely such
that � , � ���H� , where � ���H� , � 6 0

is a predefined value.
If � ���H� � � 6&0

the algorithm will be the same as the one in
Proposition 1. Table 2 implements a version where � is fixed all
the time and is not allowed to vary during the adaptation. The
choice between the two versions is application dependent.

Table 2. SM-PU-NLMS algorithm, � fixed during adaptation.

for k = 1:K
y = V ��� ]
e = d - y + n
P = P + x(k)ˆ2 -x(k-N)ˆ2
if abs(e)

�
gamma

[ � , 	 ] = sort(abs(
]

))	 = 	 (N:-1:1)�
= � ( 	 (1:L))

p =
� ��� �

alpha = 1 - gamma/abs(e)
b = alpha

�
P

if p 
 b
c = 1 - p/P
alpha = 1 - c

end;V ( 	 (1:l)) = V ( 	 (1:l)) + alpha
�
e/p
� ]

( 	 (1:l))
end;

end;

Table 3. Computational complexity.
ALG. MULT. ADD. DIV.

NLMS
���
��� �������

1
SM-NLMS

���
��� �������
2

PU-NLMS [5]
��������� ���������

1
SM-PU-NLMS

��������� ���������
2

4. COMPUTATIONAL COMPLEXITY

The computational complexities per update in terms of the num-
ber of additions, multiplications, and divisions for the NLMS, SM-
NLMS, PU-NLMS, and SM-PU-NLMS ( � fixed) algorithms are
shown in Table 3. Although the PU-NLMS and SM-PU-NLMS
algorithms have a similar complexity per update, the gain of ap-
plying the SM-PU-NLMS algorithm comes through the reduced
number of required updates. For time instants where no updates
are required, the complexity of the SM-PU-NLMS algorithm is
due to filtering, i.e.,

�
additions and multiplications. In the opera-

tion counts, the value of � ��� � � � � was assumed known at iteration$ such that � ��� � � can be computed as � ��� � � � � ��� � � � � 6 E �� �E �� � � , which requires only two multiplications and two additions.

In order to find the � largest-norm elements in
���

, comparison-
sort algorithms can be used, which require a maximum number
comparisons of order � � �! M#" � � , see, e.g., [5]. Both the PU-
NLMS and the SM-PU-NLMS algorithms require additional mem-
ory to store the pointers to the sorted list. The amount of additional
memory can be reduced by partitioning the coefficient and input
vectors into blocks and perform block updates as proposed in [4],
but at the expense of a decrease in convergence speed.

5. SIMULATIONS

In this section, the two SM-PU-NLMS algorithms are applied to
a system identification problem. The order of the plant was

� �0 �%$��
and colored noise input signal was used with & ��' set to

60dB. The colored noise was generated by passing a white noise
sequence through an one-pole filter with pole at (*) � ��3 + � C#+ .
The bound on the output error was set to " �-, $ ~ �. . Figure 4
shows the learning curves averaged over 500 simulations for the
SM-PU-NLMS algorithm using the algorithm shown in Table 2,
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Fig. 4. Learning curves.

i.e, with fixed � . The learning curve for the PU-NLMS algorithm
with � � $

was included as a reference. The step size in the
PU-NLMS algorithm was �

�,��3 C������
which resulted in the same

level of misadjustment as the SM-PU-NLMS algorithm with � �$
. In 12000 iterations the number of times an update took place

for � � $
, � � 0H�

and � � � $ were 4950, 3340, and 2420
respectively. As can be seen from Figure 4 the SM-PU-NLMS
algorithm converges faster than the PU-NLMS algorithm for the
same level of misadjustment.

Figure 5 shows the learning curves for the SM-PU-NLMS al-
gorithm with variable � . The results for the SM-PU-NLMS al-
gorithm obtained previously are included in Figure 5 for refer-
ence. As can be seen from the figure, the SM-PU-NLMS algo-
rithm with variable � converges to a slightly higher steady-state
value than the SM-PU-NLMS algorithm using fixed � . In 12000
iterations the number of times an update took place for � ���H� � $ ,� ���H� �10H�

, and � ���H� � � $ were 5070 and 3640, and 2840 re-
spectively, which is slightly higher than when � is fixed. However,
the number of coefficients in the partial update was also smaller
for most of the time instants, which can be observed from Figure 6
where for � , � $ , the number of coefficients in the partial up-
date versus time is shown during one realization. As can be seen
from the figure, close to � ���H� � � $ coefficients are used during
the initial iterations whereas later on this value decreases consid-
erably. The same trend was observed for the case of � � �H� � $
and � ���H� � 0��

but the results were not included due to limited
space.

6. CONCLUSIONS

In this paper, novel data-selective normalized adaptation algorithms
with partial updating were derived based on the concept of set-
membership filtering. The new algorithms benefit from the re-
duced average computational complexity from the set-membership
filtering framework and the reduced computational complexity re-
sulting from partial updating. Simulations were presented for a
system identification application. It was verified that not only the
data-selective adaptation algorithms with partial updating can fur-
ther reduce the computational complexity as compared with the
partial-update NLMS algorithm, but they also retain fast conver-
gence without increasing the excess of MSE.
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Fig. 5. Learning curves, � , � ����� (dashed) and � fixed (solid).
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