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f56; 166; 56g, whereas for the splitting of Example 2, a bank with
filter lengths fL0; L1; L2; L3g = f163; 163; 163;82g was used.
The maximum relative absolute reconstruction error whenx(n) is
a rectangle signal was equal to8:9E � 04 and 2:3E � 03 for
Examples 1 and 2, respectively. The errors obtained with the IIR
implementations are2:1E � 03 and2:2E � 03 for Examples 1 and
2, respectively. As to the complexity of the FIR analysis bank, if
L is the length of the input signal, themth subband samples are
obtained withLmL=Mm mults. The cost to implement the analysis
bank of Example 1 measured as multiplications per unit (MPU), i.e.,
the total cost divided byL, is equal to 55.6 MPU and 46 MPU in the
FIR and IIR case, respectively, whereas the cost relative to Example
2 is 81.6 MPU and 64 MPU in the FIR and IIR case, respectively.
Therefore, we have obtained some improvement in the computational
cost at the expence of using a noncausal implementation. Additional
computational saving, both for the FIR and IIR case, can be achieved
by using the fact that the prototypes in different branches are the
same. A third example is shown in [8] relative to a FIR bank with
splitting f1=2;1=4; 3=16;1=16g and implemented with 169.9 MPU.
The same splitting, with comparable reconstruction characteristics,
has been implemented with an IIR bank with ordersQ = f5; 4; 1; 1g
and a cost equal to 126 MPU (details of this example are not reported
here for brevity’s sake).

V. CONCLUSIONS

In this correspondence, the problem of designing pseudo-QMF
nonuniform banks based on IIR filters has been addressed. The
banks are achieved by means of the cosine modulation of different
IIR prototypes, extending some results presented in [8] for the
FIR case. Drawbacks of using IIR filters have also been pointed
out: First, since linear-phase prototypes are needed, a noncausal
implementation is necessary; second, the polyphase implementation
of the filters imposes heavy constraints on the prototypes transfer
functions. Nevertheless, some computational saving with respect to
the FIR case [8] can be achieved.
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Suppression of Transients in Variable Recursive Digital
Filters with a Novel and Efficient Cancellation Method

Vesa V̈alimäki and Timo I. Laakso

Abstract—A new method for suppressing transients in recursive infinite
impulse response (IIR) digital filters is proposed. The technique is based
on modifying the state (delay) variables of the filter when coefficients
are changed so that the filter enters a new state smoothly without
transient attacks, as originally proposed by Zetterberg and Zhang. In
this correspondence, we modify the Zetterberg–Zhang algorithm to ren-
der it feasible for efficient implementation. We define a mean square
error (MSE) measure for transients and determine the optimal transient
suppresser to cancel the transients down to a desired level at the minimum
complexity of implementation. The application of the method to all-pole
and direct-form II (DF II) IIR filter sections is studied in detail. Time-
varying recursive filtering with transient elimination is illustrated for
tunable fractional delay filters and variable-bandwidth lowpass filters.

Index Terms—Audio signal processing, recursive (IIR) filters, time-
varying filters, transients, tunable filters.

I. INTRODUCTION

Due to the recursive nature of IIR filters, abrupt changes in filter
coefficients cause disturbances to values of internal state variables
and, thus, result in transients at the filter output. These transients may
cause trouble for practical applications, such as clicks in audio signals,
and they are often the most critical problem in the implementation of
tunable or time-varying recursive filters. Examples of filtering prob-
lems where transients occur are audio signal processing applications
such as speech coding [1] and synthesis [2], vocal tract modeling [3],
[4], model-based music synthesis [5]–[7], and equalization of audio
signals [8]–[11].

Despite the importance of the problem, only a handful of research
reports exist on strategies for suppressing transients in time-varying
recursive filters. Six major approaches have been proposed for this
task:

1) a cross-fading method [12];
2) gradual variation of coefficients using interpolation [8];
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3) intermediate coefficient matrix [13];
4) signal smoothing [14];
5) an input-switching method [2];
6) updating of the state vector [1].

The most general approach to transient suppression is thestate-
variable update technique, which was introduced by Zetterberg and
Zhang [1]. Their main result was that, assuming a stationary input
signal, every change in filter coefficients should be accompanied by
an appropriate change in the internal state variables. This guarantees
that the filter enters directly from one state to another without
any transient response. The Zetterberg–Zhang (ZZ) method can
completely eliminate the transients, but it does require that all the
past input samples are known. This makes the approach impractical
as such but provides a fruitful starting point for more efficient
approximate algorithms. In this correspondence, we build on the ZZ
method.

The motivation for our work is to find a practical way to update
the state variables of a recursive filter when the filter coefficients
are changed abruptly. We present a solution for transient suppression
that gives an acceptable performance in terms of required MSE at the
minimum implementation complexity. The new transient elimination
technique introduced in this correspondence is general and can be
applied to any recursive filter structure. We concentrate on the all-pole
and direct-form II (DF II) structures since the transient elimination
technique is best suited for structures where only the feedback part
affects the state vector.

This correspondence is organized as follows. In Section II, we
discuss transients in time-varying recursive filters, introduce the
output-switching method, define the concept of transient, and show
that the ZZ method is equivalent to the output-switching method
where transients are not generated. In Section III we introduce
modifications to the ZZ method that yield a new efficient parametric
technique for suppressing the transient response at the desired level
at minimum costs. Practical examples of transient elimination are
given in Section IV in the context of tunable fractional delay allpass
filters and variable-bandwidth lowpass filters. Finally, conclusions
are drawn in Section V.

II. TIME-VARYING RECURSIVE FILTERS AND TRANSIENTS

A. Output-Switching Method

Let us consider a recursiveN th-order digital filter with the transfer
function

H(z) =
B(z)

A(z)
=
b0 + b1z

�1 + � � �+ bNz
�N

1 + a1z�1 + � � �+ aNz�N
(1)

wherebk andak are its numerator and denominator coefficients, re-
spectively(k = 0; 1; 2; . . . ; N). Assuming a causal implementation,
the input–output relation of this filter may be expressed with the
difference equation

y(n) =

N

k=0

bkx(n� k)�

N

m=1

amy(n �m) for n � 0 (2)

wherex(n) and y(n) are the input and output signal of the filter,
respectively. Unless otherwise stated, we assume thatx(n) andy(n)
are stationary over a long enough period.

In order to understand what the change of the filter characteristics
means for the filter output, we consider a single change of the
coefficient set at time indexn = nc. Ideally, the filter should instantly
reach itssteady state, and there would not be any disturbances in the
output signal after the change. This can be achieved by running two

Fig. 1. Ideal transientless change in the characteristics of a recursive filter is
implemented by switching the output of the filters. A single change of filter
coefficients at timen = nc is considered.

Fig. 2. Time-varying filter where the coefficients are changed during oper-
ation.

filters H1(z) andH2(z) in parallel, as shown in Fig. 1. The output
signals of these two filters are

y1(n) = x(n) � h1(n) =

1

k=�1

x(k)h1(n� k) (3a)

y2(n) = x(n) � h2(n) =

1

k=�1

x(k)h2(n� k) (3b)

where the asterisk denotes discrete-time convolution. The output is
switched at the time indexn = nc > 0, and the output of the system
can be expressed as

yid(n) =
y1(n) for 0 � n < nc
y2(n) for n � nc:

(4)

We call this the output-switching methodfor implementing a time-
varying filter, and it represents the ideal case where the change in the
filter coefficients does not introduce any transients.

In a practical situation where multiple coefficient changes occur,
realization of a time-varying filter using the output-switching method
of Fig. 1 grows increasingly complex. For example, if 100 different
coefficient sets are needed in a given digital filtering application,
the transient-free system to be implemented requires as many as
100 filters running in parallel. This also implies that the filter
coefficient sets must be known beforehand when the system is being
implemented in the first place. This will destroy one of the main
advantages of digital filters: the easy adaptation of coefficients.

B. The Transient

The output signal of the time-varying recursive filter depicted in
Fig. 2 may be written as

y(n) =
y1(n); for 0 � n < nc
y2(n) + yt(n); for n � nc

(5)

where y1(n) and y2(n) are the steady-state responses of the filter
before and after, respectively, the change in the coefficient set, and
yt(n) is the transient signal. It is defined as the difference between
the actual filter output and the ideal steady-state output signal, that is

yt(n) = y(n)� yid(n): (6)

This fundamental relation follows from (4) and (5).
A recursive filter can be expressed in state-variable form as (see,

e.g., [15])

v(n+ 1) = Fv(n) + qx(n) (7a)

y(n) = g
T
v(n) + g0x(n): (7b)
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The dimensions and the values of the matrices and vectors used in
(7a) and (7b) depend on the realization structure of the filter. Let
us consider the time-varying filter presented in Fig. 2. According to
(7a), the state-variable vectorv(n) can be expressed as a function of
the input signalx(n) and coefficient matrices when the coefficients
have been changed at timenc [1]

v(n) =
Fn1v(0) +

n�1

k=0
Fn�k�1
1

qx(k); 0 < n � nc

F
n�n

2
v(nc) +

n�1

k=n
Fn�k�1
2

qx(k); n > nc

(8a-b)

wherev(0) is the initial state of the filter, andF1 andF2 are the
coefficient matrices before and after the change of coefficients at time
indexn = nc, respectively. In the following, we assume thatnc � 0
so that theinitial transientFn1v(0) has died out, and this term can
be neglected in the further analysis. At the time of the coefficient
change(n = nc), the state vector can be expressed as

v(nc) =

n �1

k=0

F
n �k�1

1 qx(k) (9)

and by substituting (9) into (8b), we obtain the state vector after the
coefficients have been changed

v(n) = F
n�n

2

n �1

k=0

F
n �k�1

1 qx(k) +

n�1

m=n

F
n�m�1

2 qx(m)

n > nc: (10)

This form can be elaborated to explicitly show the cause of the
transient in the state vector

v(n) = F
n�n

2 �v(nc) +

n�1

k=0

F
n�k�1

2 qx(k); n > nc (11)

with

�v(nc) =

n �1

k=0

F
n �k�1

1 � F
n �k�1

2 qx(k): (12)

The first term in (11) represents thetransient in the state vectordue to
coefficient change, and the second term is the steady-state response of
the filter to the input after the parameters have changed. The transient
at the output of the filter can be expressed with the help of the above
equations as

yt(n) = y(n)� yid(n) = g
T

2 F
n�n

2 �v(nc) for n > nc (13)

whereg2 is the vector in the output equation (7b) after the change
of coefficients.

C. Zetterberg–Zhang (ZZ) Method for Transient Elimination

As stated by Zetterberg and Zhang [1], one way to completely
eliminate the transient caused by the change of coefficients is to
subtract the term�v(nc) from the state vector at timenc. The
modified state vector (at time indexn = nc) may be written as

v(nc)��v(nc)

=

n �1

k=0

F
n �k�1

1 qx(k)�

n �1

k=0

F
n �k�1

1 � F
n �k�1

2 qx(k)

=

n �1

k=0

F
n �k�1

2 qx(k): (14)

This is the Zetterberg–Zhang (ZZ) methodfor the elimination of
transients. It is seen that as a result of this correction, the state vector
now contains the values corresponding to the steady state of the filter
after the coefficient change. In other words, the mismatch in the
state vector has been removed, and the transient has been completely
eliminated. In fact, The ZZ method implements the output-switching
method introduced in Section II-A. The drawbacks of the ZZ method

are those discussed in Section II-A: high computational cost (since
each filter set requires an actual filtering operation all the time) and
inflexible implementation (since all the filter coefficient sets must be
predetermined before the filtering may start). In the following, we
propose modifications to the ZZ method and introduce a new and
efficient method for transient elimination that does not have these
problems.

III. N OVEL METHOD FOR SUPPRESSINGTRANSIENTS

In this section, we present a new transient cancellation method that
is based on the general idea of the ZZ method. Instead of requiring
complete elimination, we define the desired accuracy of transient
cancellation and devise a technique to design a transient eliminator
that meets the requirements at minimum implementation costs.

A. Modifications to the ZZ Method

Equation (14) reveals that the ZZ method can equivalently be
implemented by replacing the state vector with the followingtransient
cancellation vector(TCV):

vtc =

n �1

k=0

F
n �k�1

2 qx(k) (15)

which simply contains the steady-state vector obtained when the co-
efficient matrixF2 is used from the beginning. Instead of computing
the state vector, we suggest approximatingvtc with a truncated sum
as [3], [17]

v̂tc(Na) =

n �1

k=n �N

F
n �k�1

2 qx(k) =

N

k=1

F
k�1

2 qx(nc � k) (16)

whereNa is called theadvance time. It expresses the number of
samples of the input signal that are used for computing the state
vector in advance of the coefficient change. Now, the computation of
the transient cancellation vector only takes finite time and need not
be updated all the time in parallel with the filtering operation.

The use of a finite number of samples for computingv̂tc is
motivated by the fact that the impulse response of a stable recursive
filter decays exponentially and can thus be regarded as finite-length.
Thus, the knowledge of theeffective lengthof the impulse response
(i.e., how many values of this impulse response are observably
nonzero for the application) from the input to the state vector helps to
estimate how many past input samples need to be taken into account
in updating the transient cancellation vector. This principle may be
applied to all discrete-time filter structures.

B. Allpole Filter

For simplicity, let us first consider an allpole filter with an impulse
responseh1(n). The output of this filter is given by (3a) and its state
vector is

v1(n) = [v1(n) v1(n� 1) � � � v1(n�N + 1)]T (17)

and the matrices and vectors used in the state-variable representation
(8) are

F =

�a1 �a2 � � � �aN�1 �aN

1 0 0 0

0 1
...

...
. . . 0 0

0 0 � � � 1 0

; q =

1
0
...
0

g =

�a1

�a2
...

�aN

; g0 = b0: (18)
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The coefficients of this filter are changed at the time indexnc, and
the resulting new impulse response is denoted byh2(n). The output
signal of the filter can then be written as in (3b). We now apply the
new transient cancellation method introduced above, and thus, the
state vector after the change is

v̂tc(n) = [v̂tc(n) v̂tc(n � 1) � � � v̂tc(n�N + 1)]T: (19)

A key observation in finding how to determineNa is to understand
how the contents of the state vector of an allpole filter are produced.
The state vector contains theN latest output samples of the filter,
that is

v(n) = [y(n� 1) y(n� 2) � � � y(n�N)]T: (20)

On the other hand, the output signaly(n) is the convolution of the
impulse response of the filter with the input signal [see (3a)]. Thus, in
the case of an allpole filter, it is necessary to determine theeffective
length (EL) of the impulse responseof the filter NP to know how
many past input samples effectively contribute to the first value of
the state vectorv1(n) = y(n�1). After N sample cycles, this value
will disappear from the state vector. Thus, the advance time of the
transient cancellation method may then be set equal to

Na = NP +N (21)

whereNP andN are the effective length of the impulse response and
the order of the filter, respectively. This choice ofNa ensures that
the updated state vector suffers sufficiently little from the truncation
of the input signal, according to the same criterion that was used to
determineNP . The older input samples do not, in effect, contribute to
the current state vector, and hence, it is not necessary to include them.

The effective length of an infinite impulse response can be de-
termined using one of several techniques that have been reviewed
in another paper [16]. We propose the use of a new energy-based
method introduced in [16].

C. DeterminingNa Using Energy-Based Criterion

The total energy of a causal, real impulse response is defined by

E =

1

n=0

[h(n)]2 =
1

2�

�

��

jH(ej!)j2 d!: (22)

The energy-based effective lengthof the impulse response is defined
as the smallest non-negative integer time indexNP by which at least
P% of the total energy of the impulse response has arrived [16]. The
correspondingaccumulated energyEA(NP ) can be expressed as

EA(NP ) =

N

n=0

h2(n) � EP =
P

100
E: (23)

Hence, we always require thatEA(NP ) � EP since the effective
lengthNP must be an integer.

Computation of the energy-based EL of a filter thus requires
solving two problems: 1) the total energy of the impulse response and
2) the time indexNP corresponding to the effective length. The total
energy is easily solved by integration in the frequency domain [17],
[18] or by using closed-form formulas that exist for low-order filters
[17], [19]. The effective length may then be determined using a simple
algorithm described in [16] or by using approximative formulas that
are based on the analysis of first- and second-order subsections [16].

The energy of the transient signalyt(n) is defined by

Et =

1

n=0

[yt(n)]
2: (24)

The proposed new transient elimination method effectively truncates
the transient signal. We may determine the accumulated energy of

Fig. 3. Different phases of the new transient suppression scheme for a single
coefficient change at time indexn = nc. (a) Initially, coefficient set 1 is used
in a conventional way. (b)Na sample intervals before the change, a transient
eliminator, which has the new coefficient values and zero initial state, is
started in parallel with the signal filter. (c) Atn = Na, the state (TCV) of
the transient eliminator is copied to the signal filter. (d) Finally, coefficient
set 2 is used to filter the input signal.

the transient withinNa samples, that is

EAt(Na) =

N

n=0

[yt(n)]
2: (25)

This is the amount of energy that isexcludedfor a given value of
parameterNa. The problem in using this expression is that the actual
form and the exact length of the transient depend on the filter’s input
signal. However, we would like to have a measure that is independent
of the input. This can be done by utilizing (21); the length of the
transient is equivalent to the length of the impulse response of the
filter (with the new coefficient values) appended by the filter orderN .
Although we cannot say exactly how much of the transient energy is
canceled in a particular case, according to our experiment, very close
to P% is usually eliminated.

D. Suppression of Transients of a Time-Varying Direct-Form II Filter

Let us consider implementation of the transient elimination tech-
nique when the time-varying filterH(z) = B(z)=A(z) is imple-
mented using the direct-form (DF) II structure. For DF II realization,
the column vectorv(n) containsN state variables

v(n) = [v1(n) v2(n) � � � vN(n)]T (26)

and

F =

�a1 �a2 � � � �aN�1 �aN
1 0 0 0

0 1
...

...
. . . 0 0

0 0 � � � 1 0

; q =

1
0
...
0

g =

b1 � b0a1
b2 � b0a2

...
bN � b0aN

; g0 = b0: (27)

A key observation here is that the state of the DF II filter structure is
affected by the past input values only in proportion to the magnitude



3412 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 12, DECEMBER 1998

(a) (b)

(c) (d)

Fig. 4. Output signal of a second-order allpass filter when the delay is changed from 2 to 1.5 samples at time indexn = 30 using ideal transient elimination
(dashed line) and (a) no transient elimination. (b) Proposed transient suppresser withNa = 0 (clearing of state variables). (c)Na = 2. (d) Na = 4 (solid
line). The lower figure displays the difference (transient) of the actual and ideal output signals in each case.

of the impulse responsehr(n) of its recursive part, that is

hr(n) =
0; n < 0
1; n = 0
qTFn�1q; n > 0:

(28)

The feedforward coefficients do not contribute to the transient because
vectorg that contains these coefficients [see (27)] does not affect the
state vector in (7a). The elements of the state vector of a DF II filter
structure (at timen = nc)

v(nc) = [v1(nc) v2(nc) � � � vN(nc)]
T (29)

can be rewritten by means of the impulse responsehr(n) of the
recursive part of the filterH(z)

vm(nc) =

n �1

k=0

hr(k)x(nc �m� k) = yr(nc �m)

for m = 1; 2; . . . ; N (30)

whereyr(n) is the output signal of the recursive part of the IIR filter.
The transient elimination method then works as depicted in Fig. 3;

initially, the actual IIR filter H1(z)—hereafter called thesignal
filter—processes the input signal [see Fig. 3(a)].Na samples before
the coefficient change, the input signalx(n) is fed into two systems:

the signal filterH1(z) and thetransient eliminatorthat has the new
transfer functionH2(z) as illustrated in Fig. 3(b). In the case of a DF
II structure, the eliminator consists of the signal filter’s recursive part
1=A(z) with the next coefficient set. At timen = nc, the coefficients
of the signal filter are updated, and the state vector (TCV) is copied
from the transient eliminator to the signal filter’s state, as shown
in Fig. 3(c). The transient eliminator is now turned off. Finally, the
new coefficient set is used to filter the input signal [Fig. 3(d)]. As a
result of this procedure, the transient phenomenon will be sufficiently
suppressed if the value of parameterNa is large enough.

The state variables of the transient eliminator are updated according
to

vtc;k(n) = vtc;k�1(n� 1) for k = 2; 3; . . . ; N (31)

vtc;1(nc) = x(n)�

N

k=1

akvtc;k(n� 1) (32)

It is seen that (31) and (32) present a state-variable description of an
allpole filter without output. The output signal is not used since the
purpose of the transient eliminator is simply to provide the new state
vector [transient cancellation vector (TCV)] for the signal filter, as
is also shown in Fig. 3(b).
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Fig. 5. Implementation of a transientless time-varying filter as a cascade of
subfilters.

IV. EXAMPLES

We present two examples that illustrate the functioning of the new
transient suppression method.

Example 1: We filter a low-frequency sine wave (0.0454 times
the sampling frequencyfs) with a second-order allpass filter (direct-
form II implementation) that approximates a constant group delay.
Initially, the filter coefficients area1 = 0 anda2 = 0 (corresponding
to a constant group delay of 2 samples) and at time index 30, they
are changed to valuesa1 = 0:40000 anda2 = �0:028571, which
gives a maximally flat group delay approximation of a delay of 1.5
sample intervals. We present the output and transient signals of the
filter in four cases:

a) without transient cancellation;
b) when the transient cancellation method is used with parameter

valuesNa = 0 (equivalent to clearing the state variables before
setting the new coefficient values);

c) Na = 2;
d) Na = 4.

These output signals are compared with the “ideal” or transientless
output signal (dashed line in Fig. 4) that has been computed using
the output-switching method by running two filters in parallel and
changing the output at timen = 30 (see Fig. 1). The transient signal
shown in the lower figure in each case is the difference of the output
signals of the time-varying and the ideal filter.

Note that the case without transient elimination is not the worst
case: the maximum amplitude (and residual energy) of the transient
signal is larger in Fig. 4(b) than in Fig. 4(a). This confirms that the
simple trick of clearing the state variables of the filter before changing
the coefficients is not useful. In Fig. 4(c)(Na = 2), the maximum
amplitude of the transient has been slightly suppressed with respect
to Fig. 4(a) (no suppression). Finally, Fig. 4(d) presents the output
and transient signals withNa = 4. Now, the transient signal has
been much suppressed. More suppression can be achieved by using
a larger value for the advance time parameterNa.

Example 2: A sine wave(0:125fs) is filtered with a fourth-order
Butterworth lowpass filter, the cutoff frequency of which is changed
from 0:25fs to 0:05fs. In the former case, the amplitude of the sine
wave is not affected, whereas in the latter case, it is attenuated to
about 2% of its original value (attenuation of about�34 dB). The
transfer function of the filter has been decomposed into a product
of second-order transfer functions that are implemented in the DF
II structure and cascaded (see Fig. 5). Fig. 6(a) shows the output
signal and the transient without transient suppression. The ideal
output signal (which is obtained with the output-switching method)
is displayed with a dashed line. Fig. 6(b) presents the transient
signal when the proposed suppression method is used. Both second-
order sections have their individual transient eliminators, as shown
in Fig. 5. In this example, we selectNa according to the largest
pole radius of the two filters. The pole radii of the two filters after

(a)

(b)

Fig. 6. Example of transient elimination when a cascade realization of a
fourth-order lowpass filter is used. The input is a sine wave, and the cut-off
frequency is changed atn = 100. (a) Output and transient waveforms are
shown without suppression. (b) Transient when the proposed suppression
method is used(Na = 16). The ideal output signal is shown with a dashed
line in Fig. 6(a).

coefficient change arer1 = 0:7455 andr2 = 0:8880 and pole angles
�1 = 0:1237 rad and�2 = 0:2916 rad, respectively. The computation
of the cumulative energy of the impulse response tells that the 95%-
energy length of the filter is 14 samples. The order of the filter is
2, and thus, according to (21), we chooseNa = 16. The zeros of
the transfer function do not contribute to the transient since they
do not affect the state variables in the DF II structure. The energy
of the transient without suppression [Fig. 6(a)] is 0.2957, and with
suppression, it is 0.016 77, which corresponds to a suppression of
94.3% of the energy of the transient. This is very close to what
we required. Remember that the effective length is only based on
the information of the filter and not the input signal, and thus, the
eliminated energy will not be exactly given by (25).

V. CONCLUSION

A novel and efficient transient elimination technique for tunable
recursive filters has been introduced. The technique is based on a
method of state-variable update at the time of the filter coefficient
change. It was shown that a finite number of samples is sufficient for
computing new values for the state vector at the time of coefficient
change. The advance time of the transient eliminator is determined
such that it will result in required transient suppression accuracy at
minimum implementation costs. The proposed transient elimination
can be used with all kinds of recursive digital filters. However, it
can be most efficiently implemented when used with an allpole or
direct-form II filter structure. The new transient cancellation method
presented in this paper has several potential applications, for example,
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in real-time audio signal processing where the properties of filters
need to be changed while filtering a signal.
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Translation-Invariant Denoising Using Multiwavelets

Tien D. Bui and Guangyi Chen

Abstract—Translation invariant (TI) single wavelet denoising was
developed by Coifman and Donoho, and they show that TI is better than
non-TI single wavelet denoising. On the other hand, Strelaet al. have
found that non-TI multiwavelet denoising gives better results than non-TI
single wavelets. In this correspondence, we extend Coifman and Donoho’s
TI single wavelet denoising scheme to multiwavelets. Experimental results
show that TI multiwavelet denoising is better than the single case for soft
thresholding.

Index Terms—Denoising, multiwavelet, translation invariant, univari-
ate and bivariate thresholding.

I. INTRODUCTION

Over the past decade, wavelet transforms have received a lot of
attention from researchers in many different areas. Both discrete
and continuous wavelet transforms have shown great promise in
such diverse fields as image compression, image denoising, signal
processing, computer graphics, and pattern recognition to name only
a few. In denoising, single orthogonal wavelets with a single-mother
wavelet function have played an important role (see [2]–[4]). The
pioneering work of Donoho and Johnstone [2], [3] can be summarized
as follows. Letg(t) be the noise-free signal andf(t) the signal
corrupted with white noisez(t), i.e., f(t) = g(t) + �z(t), where
z(t) has a normal distributionN(0; 1). Donoho and his coworkers
proposed the following algorithm.

1) Discretize the continuous signalf(t) into fi, i = 1; � � � ; n

(e.g., via uniform sampling).
2) Transform the signalfi into an orthogonal domain by discrete

single wavelet transform.
3) Apply soft or hard thresholding to the resulting wavelet coef-

ficients by using the threshold� = 2�2 log n.
4) Perform inverse discrete single wavelet transform to obtain the

denoised signal.

The denoising is done only on the detail coefficients of the
wavelet transform. It has been shown that this algorithm offers the
advantages of smoothness and adaptation. However, as Coifman
and Donoho pointed out, this algorithm exhibits visual artifacts:
Gibbs phenomena in the neighborhood of discontinuities. Therefore,
they propose in [1] a translation-invariant (TI) denoising scheme
to suppress such artifacts by averaging over the denoised signals
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