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Abstract— In this paper, Recursive least square (RLS) based complex  tiple RFI sources simultaneously, the model can be expressed
Adaptive notch filter (ANF) using Steiglitz-McBride (SM) method is pro- as,
posed to suppress the Radio frequency interference (RFI) in very-high-
speed digital subscriber line (VDSL) systems. The proposed RLS-SM ANF

M

converges fast and requires less computational complexity than the exist- .

ing direct form constrained ANF using recursive prediction error (RPE) y(k) = Z Riexp(jwik + ¢) + e(k) (1)
algorithm. The proposed algorithm is specially advantageous when deal- i=1

ing with multiple RFI’s.
whereR; are the amplitudes of the RFI signals. They depend
on the distances between the amateur radio transmitters and
the VDSL cablesR; also depend on the electromagnetic char-
VDSL is an emerging broadband access technology to practeristics of the cables. We consider the worst case that the
vide a fast (up to 52 Mbps) data connection by using the eyower spectra density (PSD) of the RFI can be as high4s
isting twisted-pair telephone cables. As the VDSL transmisiBm/Hz. (k) is a sequence of i.i.d. complex random vari-
sion spectrum can occupy a bandwidth of up to 12 MHz [1], able with zero mean and variance denotedoBy It models
VDSL receiver has to face radio frequency interference (RFthe wideband VDSL signal which is standardized to ha®
from the amateur radio transmissions. Such an RFlis a singdd@m/Hz PSD mask.w; is a pseudo-carrier frequency where
side band (SSB) modulated narrowband signal and it can be s the highest power. Because of the SSB-SC modulation,
tremely damaging to VDSL transmission because the ingressgf frequency where most energy are distributed is not around
interfering noise level may be as high as 0 dBm peak envelopge carrier frequency, but shifted 1-2 kHz due to the PSD of

power (PEP) at the receiver input and the average power cgie voice signal. It is known that (1) can be represented by an
be —3 dBm for the worst-case [1]. To alleviate the RFI prob-ARMA model [2],

lem, an analog RFI canceller can be implemented to prevent

the receiver analog-to-digital convertor (ADC) from saturation. AlgYy(k) = A(pg)e(k) )
However, the interference level after the ADC can still be sev-

eral orders of magnitude higher than the desired signal. ThushereA(g~!) is a monic polynomial of orde} and its roots

it is important to combat the RFI also in the digital domain. are on the unit circle with arguments equal{to;}. The pa-

In this paper, we focus on digital RFI suppression in the baseameterp € (0,1) is a pole radius which keeps the filter
band. Since the amateur radio interference band is very narrofg—1)/A(pq 1) stable. Such filter is also known as con-
compared to the sampling frequency of the VDSL signal, wetrained form notch filter. In our applicatioa¢k) in (2) ap-

can model the RFI as a sum of complex sinusoids embeddedgroximates the wideband VDSL signal to an ordéy1 — p),

a white noise like VDSL signal in the baseband. We proposewehereo(z) is defined such thgo(z)/z| is bounded ag: —

new complex ANF algorithm using Steiglitz-McBride method0 [3]. If the notch filter can be identified online, filter output
to suppress RFI. e(k) is the clean VDSL signal. To guarantee reliable VDSL
The paper is organized as follows. In Section 2, the systetransmission, at least 20 dB signal to noise ratio (SNR) is
model is defined. Complex ANF algorithms using the SMheeded in the RFI band. Therefore, the digital RFI suppressor
method are reviewed in Section 3. Section 4 analyzes the ANfRould reduce the RFI PSD by 40 dB at the incident frequen-
convergence. In Section 5, simulation results show the inties. In addition, the adaptive RFI suppressor should converge
proved performance of ANF using SM method. Finally, Secfast to the incident frequency and be able to deal with multiple
tion 6 concludes the paper. RFI frequencies.

I. INTRODUCTION

Il. SYSTEM MODEL I1l. ComMPLEX ANF ALGORITHMS USING SM METHOD

The simplest time-domain model for an RFI corrupted base- In an early contribution to ANF algorithms by Nehorai [4],
band VDSL signal is a sum of complex sinusoids embedded the real-valued Gauss-Newton type recursive prediction error
complex white Gaussian noise. Note that there may exist myRPE) algorithm was derived for constrained notch filter. The
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Fig. 1. Adaptive notch filter with recursive prediction error algorithm for co-Fig. 3. Block diagram of ANF using Steiglitz-McBride method in adaptive
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. . . o . Fig. 4. Block diagram of modified ANF using Steiglitz-McBride method
Fig. 2. Adaptive notch filter based on Steiglitz-McBride method

cations when the noise is colored. Since the resulting transfer

RPE algorithm has the structure shown in Fig. 1. The algqynction after the convergence is desired to be a notch filter, the
rithm adjusts the filter coefficients to minimize the cost funcfollowing equation should be satisfied:

tion E{|e(k)?|} by calculating the gradient recursively. Based
on the same obijective function, Pei [5] extended the RPE algo- ) 1 Ni(g™Y) Alg™)
rithm to complex coefficient ANF, which converges to a small Jim (1 -4 Dk(q—l)) = Apg )
biased solution. Cheng [3] derived a new real-valued ANF

algorithm using the well-known SM method. Cheng’s ide&his yields the block diagram shown in Fig 4. Therefore the
comes from the system identification application by using dgsolynomialsDy (pg~!) and Ny (¢g~!) in modified Fig. 2 can be
layed signal as the reference signal [6]. The resulting blodkefined as

diagram is depicted in Fig. 2. The function of the delay factor

A in the figure is to decorrelate the prefilter outpyté) and Di(¢™") = Alpg™)

h(k) in the upper and lower paths. By letting the structure to Ni(g™) = [A(pg™*) — Alg H]g (4)
approximate a notch filter, the structure shown in Fig. 3 is ob-

tained. As we notice that there is an advance operation in tBe Algorithm derivation

lower branch of the filter, suc_h_a structure is unreal_izable e>_<cept-|-he adaptive algorithm can be derived directly from
whenA = 1. Cheng [3] modified the §trycture by mtroducmgFig 4. Let the estimated coefficient vect®, ; =
delays also at the upper branch to eliminate the advance op&-

®)

- X . i 1,az,- -+ ,aum]t , where the superscrifft denotes the trans-
ation. It is shown that the algorithm converges to an unbiaseql - operation. Using the recursive least square (RLS) proce-

solution. In this paper, we extend the idea of [3] and derive g .o \ve derive the detailed algorithm as below.
complex coefficient ANF algorithm using the SM method with ’

a simplified structure. Stepl: Prefilter

A. Simplified ANF structure
9(k)

Rather than introducing delays before the prefilter, we move Ap-1(pg=1) Y
the delay operation at the lower branch after the prefilter shown R
in Fig. 2, such arrangement can save one prefilter block. BathereAd, 1 (pg~') =1 +af,k—1pq_1 +a§,k—1pzq_2 +-+
cause our input VDSL signal is modelled as white noise, we', , ,p™q¢=M.
can defineA = 1. LargerA can be chosen in other appli- ’

(k) ©)
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Rearranging the input-output, we obtain, B. Optimal o for SM method

_ H
9(k) = y(k) — ©,_, Gy (6) In the algorithms derived by Pei [5] and Cheng [3], the step-

where the superscrifif denotes conjugate transpose, and ~ Size is treated in the same way @swhich approaches expo-
nentially the predefined value. Withaupriori knowledge of

— 2 M T
G = [pg(k —1),p°g(k = 2),--- , p" g(k — M)] the input, the choice oft is usually a difficult task. In this
Since the prefilter output for lower branglik) = g(k — 1) is  paper, we apply the optimal stepsize derived in [7] for lIR fil-
a delayed version af(k), one prefilter can be saved. ters using the SM method. An optimal stepsize puts a proper
weight on the new incoming data at each updating step, which
Step 2: Output expression will lead to the maximal reduction of MSE, thus speeding up
The output can also be arranged in vector form, the convergence. The optimalhas the form
(k) = g(k)Ax(g™") — h(k + D[Ax(pg™") — Ar(g™")] . K "
= g(k) - O, 3(k) ) o®) =17 (1)
where
_ T where0 < x < 1 is a reduction factor which is related to the
@ (k) = [01(k), $2(K), -~ , Srs (R)] filter order andr(k) = ® (k)P (k)®(k). Note thatr (k) is an
and intermediate result of (8), so that finding the optimal conver-

i . ; . gence factor does not increase the complexity of the algorithm.
oi(k) = —p'g(k —i) + (p' = Dh(k —i+1)

Step 3: Covariance matrix update
1 P(k)® (k)27 (k)P (k)
P(k+1) = O] P(k) - o o7 ()P ()2 (k) (8) We apply the proposed complex RLS-SM ANF and the di-
_ o _ rect form ANF using RPE algorithm to suppress RFI respec-
where)(k) = 1 — a(k) is the forgetting factor in the RLS al- tively in the first downstream channel of a single carrier modu-

V. SIMULATIONS

gorithm. lated (SCM) VDSL systems standardized by [1]. The channel
o occupies band fror.138 MHz to 3 MHz. The data rate varies
Step 4: Estimation parameter update according to the constellation size, ranging frérh to 12.96
Ok +1) = O(k) + a(k)Prp1 ®(k)e(k)* Q) Mbps. The amateur radio signal that interferes with this chan-

nel is expected to appear betweedl MHz and2.0 MHz and
The algorithm is in the RLS form. The differences between thg bandlimited to4 kHz. If we downsample the baseband sig-
RPE algorithm and our RLS algorithm using the SM methodgal according to the RFI band, VDSL signal is white noise,
are on the choice of regression vecigk) and errore(k). A and RFI will appear betweefr-0.5,0.5) in the normalized fre-
better choice of these parameters can lead to faster convergefigéncy range. By cascading first order ANF, we can estimate
and less excess mean square error (MSE) at the output.  the corresponding RFI frequencies. The reason for downsam-
pling is that the RFI only appears betwegn0.03,0.03) in
the normalized frequency range if we use the VDSL sampling

In both RPE and RLS-SM algorithms, the convergenceate. ANF cannot discriminate so closely located multiple RFI
speed and the excess MSE depends on two parameters: gbarces. The ANF will converge to local minimum and RFI
pole radiusy and the stepsize. suppression will distort the VDSL signal. In all the following
experiments, The pole radius is time-varying according to (10),
wherepy = 0.99, p(1) = 0.7 andp(o0) = 0.995. We use opti-

In most of the ANF algorithms the pole radius is a time-mal stepsize derived in (11) for RLS-SM algorithms, assuming
varying function [5], [3]. The reason is thatdetermines the noa priori knowledge of the input signal, whereas the stepsize
bandwidth of the notches. Practically, if ag@riori information in RPE algorithm is optimized according to the input signal to
is available on the input sinusoid, when the notches are taaterference ratio (SIR). The input signal is modelled as in (1).
narrow, the algorithm may not converge. On the other hand,Tehe RFI and VDSL power are chosen such that the interference
larger pole radius{ — 1) will lead to less excess MSE after level from one RFI sources %) dB higher than the VDSL sig-
convergence. Therefore an exponential function is often usedl. In multiple RFI case, the SIR is calculated by the sum of
for p — 1 by letting p grow from an initial valuep(1) to the RFI powers and VDSL. The output signal is normalized with
desired valug(oo) according to respect to the VDSL power, in other wordsdB output is the

best suppression result that we can achieve. The simulation
plk +1) = pop(k) + (1 = po)p(e0) (10) results are averaged oved0 independent runs. The SIR and
wherep, determines the rate of changeyifk). normalized output power are shown in Table I.

IV. CONVERGENCECONSIDERATIONS

A. Time-varying p
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Fig. 6. The output MSE when estimating 2 RFI sources

Fig. 8. The output MSE when estimating 5 RFI sources using RLS-SM algo-
rithm

A. The first-order notch filter

There is one complex sinusoid signal embedded in whife- The third-order notch filter
noise, whose frequencyis = 0.015. The filter output MSE  The third experiment is for the case of three RFI signal where
is shown in Fig. 5. It can be seen that using RLS-SM algorithiheijr frequencies are; = 0.1, w, = 0.2 andws = 0.4. In
leads to the optimal solutions in ca. 20 iterations, whereas tiigis case, RPE algorithm with time-varying pole radius does
RPE algorithm requires ca. 40 iterations to converge. not converge, thereforgis set fixed ab.8. As can be seen in
] Fig. 7, compare with RLS-SM algorithm, the RPE algorithm
B. The second-order notch filter converges slower and generates higher excess MSE.

Now there are two RFI sources whose frequenciesvare o ) .
0.1 andw; = 0.3. The slower convergence can be seen iP' Estimation of 5 RFI sources using RLS-SM algorithm

Fig. 6. As we can also notice, RPE algorithm leads to lower Thisis an extreme case thHaRFI sources exist with frequen-
excess MSE in the stationary model because of the choice @ésw; = 0.1, wy = 0.2, w3 = 0.25, wq = 0.3 andws = 0.4.

the stepsize. However, since RFI frequency are slowly timé&ince this is a difficult situation for ANF to converge, we loose
varying in practice, RLS-SM algorithm has better tracking abilthe criteria on excess MSE and |gtoc) = 0.95. As can be

ity and converges fast at the same time. seen in Fig. 8, the algorithm converges in ca. 400 iterations,
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TABLE |
NORMALIZED OUTPUT MSE AFTER CONVERGENCE

SIR(dB) | RLS-SM | RPE
15 order —20 0.6 0.09
27 order| —25 1.18 0.97
3% order| —29 1.2 1.7
5th order | —34 1.32 -

whereas RPE algorithm fails to converge within 1024 itera-
tions.

VI. CONCLUSIONS

In this paper, the ANF using SM method proposed in [3] is

extended to the complex-coefficient case. We propose a simpli-
fied structure by relocating the delay elements on one branch
of the filter. Simulations show RLS-SM algorithm converges
faster than the RPE algorithm when suppressing sinusoid em-
bedded in white Gaussian noises. It is also more robust since
it can deal with up to 5 RFI sources. Furthermore, optimized
stepsize developed in [7] for RLS-SM algorithms is also em-
ployed to speed up the convergence. By cascading first order
notch filters, we can efficiently suppress multiple RFI signals
in VDSL systems.
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