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Adaptive notch filters (ANF) are widely used in
many signal processing applications to extract,
eliminate or trace narrow-band or sinusoidal signals
embedded in broadband noise [1]. If such signal
consists of in-phase and quadrature components, a
complex coefficient ANF must be implemented.
Most of such applications are in radar and
communication systems. To yield sharp-cutoff
bandpass characteristics, IIR filter formulation is
more efficient than its FIR counterpart. An early
contribution by Nehorai [2] imposed constraints on
a notch transfer function, which leads to simple
relations between poles and zeros, thus, it can be
exploited advantageously in adaptive filter design.

Numerous algorithms for ANF have been
proposed (e.g., [2-5]), most of them belonging to the
recursive prediction error type. An important issue
to consider when implementing these ANF
algorithms is the choice of the convergence factor
associated with the algorithm for coefficient
updating and the pole radius factor associated with
the notch bandwidth. These two factors affect the
stability and the convergence speed of the
algorithm. The choice of these factors is a tradeoff
between tracking ability and noise sensitivity [1]. In
this paper we propose a variable convergence factor
that optimizes a well-defined instantaneous error
criterion not requiring �� ������ assumptions about
the signal and noise characteristics. The paper is
organized as follows. Section 2 defines the system
model for a Gauss-Newton algorithm based complex
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adaptive IIR notch filter. The optimal convergence
factor is derived in section 3. In section 4,
simulation examples are provided. Finally section 5
concludes the paper.
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Adaptive notch filters are designed for signal
environments consisting of sinusoidal components
of unknown frequencies immersed in white noise. In
communications systems, the sinusoidal signals are
often modeled with complex exponentials. Such
signals take the form
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exp ϕω (1)

where 
� is the amplitude of the �
� sinusoid and ϕ�� is
its phase. �(�) denotes the noise which is assumed
independent of the sinusoid terms, and will usually
be considered white. In order to estimate the
sinusoidal frequencies ω� and consequently eliminate
the corresponding sinusoids, the following
constrained form of the notch filter has been
considered in many papers [5].
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where ω� represents the �
��notch frequency and � is
the pole radius. The bandwidth of the complex
notch created by each pole-zero pair is ���= π(1−�)
[3]. ���������+ 	��� is a complex coefficient and the
notation * denotes the complex conjugate. Note that
the above notch filter consists of cascades of�� first-
order filters which have their zeros on the unit
circle, resulting in exactly zero gain at each notch
frequency. Observe (2), the complex-valued
coefficients can be parameterized in vector form

[ ]�

����       21 ⋅⋅⋅=� (3)

and (2) can be expressed in the form [2]
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The input-output description of a notch filter can
also be expressed in difference equation form

( ) ( ) ( ) ( )[ ]
( ) ( )���

������������

�

�

�

�

�

��−=

−−−+= �
=1

* (5)

where
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and the superscript � denotes Hermitian operator
(conjugate transpose). The reference signal for
notch filter is considered as zero and �(�) is the
output error.

(�(�+�*�+���������

We can use Gauss-Newton type algorithm [5] to
adjust parameter vector θθθθ of the above notch filter
form. First, we calculate the output error �(�) based
on an estimate of θθθθ and input-output data.

( ) ( ) ( ) ( )������ � ��−= (7)

Because we have a causal system, the data are zero
if their time indexes are smaller than 1. The initial θθθθ
can be defined as θθθθ0 = [0, 0,…,1]T Now, take the
gradient vector of �(�) with respect to θθθθ, which can
be defined as ΨΨΨΨ(�) and update the covariance matrix
�

( ) ( ) ( ) ( ) ( ) ( )������ ����� αλ +=+1 (8)

where λ(�) is the forgetting factor and
α(�) = 1 − λ(�) is regarded as the convergence factor,

( ) 10 ≤≤ �α (9)

which determines the convergence speed and the
stability of the algorithm. Since computing the
inverse of a matrix is computationally expensive, the
inversion is usually updated by using the matrix
inversion lemma. Defining , = �−1, we have
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Then we can update θθθθ according to the Newton
algorithm with the available estimate of the
covariance matrix.

( ) ( ) ( ) ( ) ( ) ( )������� *11 �,�� ++=+ α (11)

After obtaining θθθθ(��1), we can improve the
estimation of �(�) by its �����
������ estimate value

( ) ( ) ( ) ( )������ � �� 1ˆ +−= (12)

The reason why �(�) is superior to �(�) is because it
includes the influence of the new incoming data to
the filter coefficients when calculating the filter
output. From this point of view, α(�) can be
interpreted as the weight for the new incoming data.

Calculating the gradient ΨΨΨΨ(�) can be
computationally expensive. However, we can also
solve it recursively. Define the negative gradient
vector as
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According to [9], assuming that the coefficients
adapt slowly, i.e.,

( ) ( ) ( )11 +−≈⋅⋅⋅≈−≈ ���� ��� (16)
we have
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So, we can compute ΨΨΨΨ recursively. According to
(6), ΨΨΨΨ(�) can be expressed as
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where ��(�) and ��(�) can be updated by the
following difference equations
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In the Gauss-Newton algorithm, prediction error
�(�) is replaced by �����
������ prediction error �(�).
In each iteration, we need to determine α(�) for the
purpose of updating , and θθθθ. Since the statistics of
the input signal and the system to be modeled are
not known in practice, a fixed convergence factor
tends to yield unsatisfactory results. An optimal
convergence factor α(�) puts a proper weight on the
new incoming data at each updating step, which will
lead to the maximal reduction of MSE, thus
speeding up the convergence.

In the updating step (7) the MSE is a
nonquadratic function of θθθθ. Nevertheless, in the
neighborhood of a given point on the MSE surface,
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the MSE can be approximated by a quadratic
function
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where ρρρρ(�) is defined as ∇ θθθθε(�)|θθθθ=0 and �(�) is the
Hessian matrix in (8). Differentiating (21) with
respect to θθθθ yields an expression for ρρρρ(�)

( ) ( ) ( ) ( )���� ��� −∇= ε (22)
where
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In the process of updating θθθθ, ε(�) can be substituted
by its �����
������ estimate
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where

( ) ( ) ( ) ( ) ( ) ( ) ( )���������
*1 �,��� α=−+= (25)

By inserting (22) into (24), it can be easily shown
that
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where
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By inserting (25) (23) into (26), noticing that ,(�) is
a Hermitian matrix, i.e., ,�(�)=,(�), we obtain
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where

( ) ( ) ( )����

� �,�=τ (29)

The optimal α(�) that yields maximal MSE
reduction can be found by setting the derivative to
zero,
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Which yields the optimal solution
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If 2τ� − 1 is less than zero, it should be replaced by
zero. Note that the above result is similar to the one
in [8], which is derived under the assumption of
quadratic MSE surface. However, in our case the
formation of θθθθ is complex valued and is constrained

due to the structure of the filter, thus, the MSE
surface is non-quadratic, an empirical reduction
parameter κ must be included

( )
121 −+

=
�

��
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τ

κα (32)

Based on the simulation for the first order notch
filter, as a rule of thumb, κ = 0.05 is a good
choice. It should be noted that the initial
convergence factor is not critical in the case of
using optimal convergence factor. On the other
hand, for a fixed step size, a proper choice of α
depends on a priori knowledge of SNR. In
practice, small enough α has to be chosen to
guarantee the convergence in the case of low SNR
conditions. Furthermore, note that τ� is an
intermediate result of (10), therefore, finding the
optimal convergence factor does not increase the
complexity of the algorithm.
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Due to the constraint form of the notch filter, it
can be completely characterized by its first-order
stages. For simplicity, we will consider only the
single-notch case in the simulation. The input signal
consists of a complex sinusoid with noise and the
sinusoid power is 10 dB higher than the noise
power. Suppose single sinusoid exists in the model
(1), we compare the convergence of the algorithm
with fixed convergence factor α and the algorithm
with optimal α. Pole radius affects the convergence
speed. To compare the influence of convergence
factor, we fix the pole radius at � = 0.89. The fixed
convergence factor is set to be α = 0.0005 to
guarantee the stability of the estimate. The reduction
parameter κ equals to 0.05.
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Figure 1: Convergence of the algorithm for a
first order notch filter
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Figure 2: Frequency estimation results for the
first order notch filter.

The output MSE is shown in Fig. 1, which is the
average of 50 independent runs. It can be seen that
using optimal α leads to the optimal solution in ca.
40 iterations, whereas the fixed step size requires ca.
130 iterations. Furthermore, the frequency estimate
in Fig. 2 shows better performance for the variable
convergence factor too.

The second example in Fig. 3 shows the MSE
convergence for high noise case. The pole radius
again equals to 0.89. The sinusoid power is now
only 3 dB higher than the noise power. Now, the
convergence of the notch filter is slower for both
algorithms. The fixed step size converges in ca. 200
iterations, whereas the optimal step size has
converged in ca. 60 iterations, which is an
improvement of ca. 140 iterations.
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Figure 3: Convergence of the algorithm for a
first order notch filter for high noise case.
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A complex constrained IIR notch filter based on
Gauss-Newton algorithm using optimal
convergence factor has been proposed. The

scheme to optimize the convergence factor α is to
maximize the reduction of MSE in each iteration,
which leads to faster convergence and makes it
easier to choose α� without �� ������ knowledge of
the signal model. Furthermore, because the
calculation of α only requires the intermediate
result in the updating algorithms, it does not
increase the complexity of the algorithm
essentially.

����������

[1] L. Ljung and T. Söderström, ������� ���


���
���� � � �������!�� ����
� ���
���, MIT
Press, Cambridge, 1983

[2] A. Nehorai, "A minimal parameter adaptive
notch filter with constrained poles and zeros,"
�"""������#����$$
, vol. ASSP-33, no. 4, pp.
983-996, Aug. 1985.

[3] P. Stoica and, A. Nehorai, “Performance
analysis of an adaptive notch filter with
constrained poles and zeros,” �"""� �����#� ��

�$$
, Vol. ASSP-36, No.6, pp. 911-919, June
1998.

[4] P. Händel and, A. Nehorai, “Tracking analysis
of an adaptive notch filter with constrained
poles and zeros,” �"""� �����#� $����%


���������, Vol.42, No.2, pp. 281-291, Feb.
1994.

[5] S. C. Pei and C. Tseng, "Complex adaptive IIR
notch filter algorithm and its applications,"
�"""� �����#� ��� &�����
�� ���� $��
�'�(��)

���%�������*���
�%�$����%�
���������, vol. 41,
no. 2, pp. 158-163, Feb. 1994.

[6] P. S. R. Diniz, ����
�!��  �%
�����)� �%����
�'

��������
���%��'�%�'��
�
���, Kluwer, Boston,
1997.

[7] J.E. Cousseau and, P.S.R. Diniz, “On optimal
convergence factor for IIR adaptive filters,” ��

���#� �""" �$&�$� +,-, Vol 2, pp.137–140,
London, May, 1994.

[8] J.E. Cousseau, P.S.R. Diniz, and A. Antoniou,
“Improved parallel realisation of IIR adaptive
filters”, 
���#� �""� 
����������� ���
� .)

&�����
�/� *�!����� ���� $��
�'�, Vol: 140 5,
pp.322 –328, Oct. 1993.

[9] J. J. Shynk, “A complex adaptive algorithm for
IIR filtering,” �"""� �����#� ��� �$$
, Vol.
ASSP-34, No.5, pp. 1342-1344, Oct. 1986.


